cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036649 Number of bicentered 5-valent trees with n nodes.

This page as a plain text file.
%I A036649 #20 Dec 26 2020 11:09:13
%S A036649 0,0,1,0,1,1,3,4,10,18,46,95,231,524,1287,3095,7713,19125,48258,
%T A036649 122026,311935,801061,2072629,5387753,14081981,36959506,97419796,
%U A036649 257724555,684254908,1822560590,4869517848,13047469920,35053803135
%N A036649 Number of bicentered 5-valent trees with n nodes.
%H A036649 E. M. Rains and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/cayley.html">On Cayley's Enumeration of Alkanes (or 4-Valent Trees)</a>, J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
%H A036649 <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F A036649 a(n) = A036650(n) - A036648(n).
%t A036649 n = 30; (* algorithm from Rains and Sloane *)
%t A036649 S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4;
%t A036649 T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S4[T,h-1,z]z, z], n+1];
%t A036649 Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* _Robert A. Russell_, Sep 15 2018 *)
%Y A036649 Cf. A036648, A036650.
%K A036649 nonn
%O A036649 0,7
%A A036649 _N. J. A. Sloane_