cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036658 Number of n-node rooted unlabeled trees with exactly 3 edges at root and otherwise out-degree <= 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 6, 14, 29, 68, 147, 337, 757, 1734, 3953, 9113, 20988, 48645, 112909, 263084, 614201, 1438001, 3373253, 7930660, 18679005, 44075988, 104173194, 246604137, 584620470, 1387879434, 3299067379, 7851736348, 18708682855, 44627133541, 106563177864
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    CI2 := proc(f) (1/2)*(f^2+subs(x=x^2,f)); end; CI3 := proc(f) (1/6)*(f^3+3*subs(x=x^2,f)*f+2*subs(x=x^3,f)); end;
    N := 40: G036658 := series(x^3*CI3(G036656),x,N); A036658 := n->coeff(G036658,x,n);
  • Mathematica
    terms = 35;
    CI3[f_] := (1/3!)*(f^3 + 3*(f /. x -> x^2)*f + 2*(f /. x -> x^3));
    G036656[] = 0; Do[G036656[x] = x + (1/2)*(G036656[x]^2 + G036656[x^2]) + O[x]^terms // Normal, terms];
    G036658[x_] = x^3*CI3[G036656[x] - x] + O[x]^(terms+5);
    Drop[CoefficientList[G036658[x], x], 5] (* Jean-François Alcover, Jan 24 2018, adapted from Maple *)

Formula

Let G036656(x) = g.f. for A036656. G.f.: x^3*cycle_index(S3, G036656), where cycle_index(Sk, f) means apply the cycle index for the symmetric group S_k to f(x).
E.g., cycle_index(S2, f) = (1/2!)*(f^2+subs(x=x^2, f), cycle_index(S3, f) = (1/3!)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)).

Extensions

Corrected by N. J. A. Sloane, May 03 2000