This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036698 #31 Dec 20 2021 10:02:43 %S A036698 0,1,3,7,12,20,28,37,49,63,79,94,110,132,153,177,199,225,252,282,314, %T A036698 343,379,413,448,490,530,572,613,657,705,750,802,852,906,963,1013, %U A036698 1073,1128,1194,1256,1315,1381,1447,1519,1590,1656 %N A036698 a(n) is the number of Gaussian integers z=a+bi satisfying |z|<=n, a>0, b>=0. %H A036698 Seiichi Manyama, <a href="/A036698/b036698.txt">Table of n, a(n) for n = 0..1000</a> %H A036698 <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a> %F A036698 a(n) = A000603(n) - n - 1. %F A036698 a(n) = n^2 * Pi/4 + O(n). - _Charles R Greathouse IV_, Apr 03 2013 %F A036698 a(n) = A014200(n^2). - _Seiichi Manyama_, Dec 20 2021 %o A036698 (C) %o A036698 typedef unsigned long ulong; %o A036698 ulong A036698(ulong i) %o A036698 { %o A036698 const ulong ring = i*i; %o A036698 ulong result = 0; %o A036698 for(ulong a = 1; a <= i; a++) %o A036698 { %o A036698 const ulong a2 = a*a; %o A036698 for(ulong b = 0; b <= i; b++) %o A036698 { %o A036698 ulong z = a2 + b*b; %o A036698 if ( ring >= z ) result++; %o A036698 } %o A036698 } %o A036698 return result; %o A036698 } /* _Oskar Wieland_, Apr 02 2013 */ %o A036698 (PARI) a(n)=my(n2=n^2);sum(a=1,n,sqrtint(n2-a^2)+1) \\ _Charles R Greathouse IV_, Apr 03 2013 %o A036698 (PARI) a(n) = sum(k=1, n^2, sumdiv(k, d, kronecker(-4, k/d))); \\ _Seiichi Manyama_, Dec 20 2021 %Y A036698 Cf. A000603, A014200. %K A036698 nonn %O A036698 0,3 %A A036698 _Clark Kimberling_