A036761 Number of refactorable integers (A033950) of binary order (A029837) n.
1, 1, 0, 1, 2, 2, 4, 8, 13, 22, 39, 77, 137, 254, 459, 889, 1665, 3175, 6041, 11619, 22319, 42979, 83123, 160649, 311826, 605225, 1176998, 2291702, 4466923, 8716126, 17023771, 33279942, 65109458, 127484313, 249783733, 489738130, 960801221, 1886039740
Offset: 0
Keywords
Examples
{1} has binary order 0, {2} has binary order 1, no term has binary order 2, {8} has binary order 3, {9,12} have binary order 4, {18,24} have binary order 5, ... The 8 numbers, between 65 and 128 (with binary order 7) which are divided by d(x) (A000005) are 72,80,84,88,96,104,108,128, so a(7)=8.
Programs
-
Maple
with(numtheory): A036761 := proc(n) local ct,k,lim: if(n=0)then return 1: else ct:=0: lim:=2^n: for k from 2^(n-1)+1 to lim do if(k mod tau(k) = 0)then ct:=ct+1: fi: od: return ct: fi: end: seq(A036761(n),n=0..10); # Nathaniel Johnston, May 04 2011
-
Mathematica
Table[Count[Range[2^(n - 1) + 1, 2^(n)], k_ /; Divisible[k, DivisorSigma[0, k]]] + Boole[n == 0], {n, 0, 22}] (* Michael De Vlieger, May 20 2017 *)
Extensions
a(22)-a(37) from Donovan Johnson, Aug 29 2012
Comments