cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036773 Number of labeled rooted trees with a degree constraint: ((5*n)!/(120^n)) * C(5*n+1, n).

This page as a plain text file.
%I A036773 #17 Jul 08 2025 21:57:20
%S A036773 1,6,13860,423783360,70220478968640,41004669682770393600,
%T A036773 65405789473547026656472320,240729724316568938710767014707200,
%U A036773 1813083536072533851678174232377806438400,25541737277107694920826740625991927645705830400
%N A036773 Number of labeled rooted trees with a degree constraint: ((5*n)!/(120^n)) * C(5*n+1, n).
%H A036773 L. Takacs, <a href="http://www.appliedprobability.org/data/files/TMS%20articles/18_1_1.pdf">Enumeration of rooted trees and forests</a>, Math. Scientist 18 (1993), 1-10; see Eq. (13) on p. 4 (with r = 5).
%H A036773 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A036773 E.g.f. with interpolated zeros: Let G(x) = Sum_{n >= 0} a(n)*x^(5*n + 1)/(5*n + 1)!. Then this e.g.f. satisfies the equation G(x) = x*(1 + G(x)^5/5!). - _Petros Hadjicostas_, Jun 08 2019
%Y A036773 Cf. A036770, A036771, A036772.
%K A036773 nonn
%O A036773 0,2
%A A036773 _N. J. A. Sloane_