This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036791 #17 Aug 03 2024 13:25:14 %S A036791 1,5,1,1,2,2,1,2,1,2,1,1,6,1,1,1,1,1,9,24,1,3,1,7,1,5,1,2,2,3,1,2,2,1, %T A036791 8,11,4,2,2,2,1,2,2,1,1,2,1,23,1,3,3,1,6,2,9,1,3,2,17,1,5,3,1,8,1,1,1, %U A036791 1,1,4,1,5,1,2,1,38,1,5,5,2,6,2,73,1,1,1,194,27,1,1 %N A036791 Continued fraction for (2/Pi)*Integral_{x=0..Pi} sin(x)/x. %C A036791 Continued fraction expansion for Integrate[Binomial[1,x], {x,0,1}]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006 %C A036791 Integral(sin(x)/x dx) = x - x^3/(3*3!) + x^5/(5*5!) - x^7/(7*7!) + ... - _Harry J. Smith_, Apr 28 2009 %H A036791 Harry J. Smith, <a href="/A036791/b036791.txt">Table of n, a(n) for n = 0..19999</a> %H A036791 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A036791 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %e A036791 1.178979744472167270232028845... = 1 + 1/(5 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, Apr 28 2009 %t A036791 ContinuedFraction[N[Integrate[Binomial[1, x], {x, 0, 1}], 120]] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006 *) %o A036791 (PARI) { allocatemem(932245000); default(realprecision, 21000); y=0; x=Pi; m=x; x2=x*x; n=1; nf=1; s=1; while (x!=y, y=x; n++; nf*=n; n++; nf*=n; m*=x2; s=-s; x+=s*m/(n*nf)); x*=2/Pi; x=contfrac(x); for (n=1, 20000, write("b036791.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 28 2009 %Y A036791 Cf. A036793 (decimal expansion). %K A036791 nonn,cofr %O A036791 0,2 %A A036791 _N. J. A. Sloane_ %E A036791 Offset changed by _Andrew Howroyd_, Aug 03 2024