This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036793 #31 Feb 16 2025 08:32:37 %S A036793 1,1,7,8,9,7,9,7,4,4,4,7,2,1,6,7,2,7,0,2,3,2,0,2,8,8,4,5,8,2,4,9,0,9, %T A036793 7,4,1,4,6,3,8,9,7,4,2,0,9,6,4,3,6,6,1,4,6,8,3,4,5,0,3,7,0,5,7,6,8,3, %U A036793 0,3,7,0,3,7,0,5,0,4,3,8,5,9,0,7,7,6,6,8,3,4,7,9,4,9,4,1,0 %N A036793 Decimal expansion of (2/Pi)*Integral_{x=0..Pi} sin(x)/x dx. %C A036793 Integral(sin(x)/x dx) = x - x^3/(3*3!) + x^5/(5*5!) - x^7/(7*7!) + ... . - _Harry J. Smith_, Apr 28 2009 %D A036793 E. J. Borowski and J. M. Borwein, Dictionary of Mathematics, 3rd printing, Harper Collins, 1991, Gibbs phenomenon. %D A036793 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.1 Gibbs-Wilbraham Constant, p. 249. %H A036793 Harry J. Smith, <a href="/A036793/b036793.txt">Table of n, a(n) for n = 1..20000</a> %H A036793 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Wilbraham-GibbsConstant.html">Wilbraham-Gibbs Constant</a> %F A036793 A036792 divided by A019669. - _R. J. Mathar_, Mar 22 2011 %e A036793 1.17897974447216727..., the constant in Gibbs phenomenon. %t A036793 RealDigits[ N[ (2/Pi)*SinIntegral[Pi], 105]][[1]] (* _Jean-François Alcover_, Nov 07 2012 *) %o A036793 (PARI) { default(realprecision, 20080); y=0; x=Pi; m=x; x2=x*x; n=1; nf=1; s=1; while (x!=y, y=x; n++; nf*=n; n++; nf*=n; m*=x2; s=-s; x+=s*m/(n*nf)); x*=2/Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b036793.txt", n, " ", d)); } \\ _Harry J. Smith_, Apr 28 2009 %Y A036793 Cf. A036791 (continued fraction), A061079 for Si( x ). %K A036793 nonn,cons %O A036793 1,3 %A A036793 _N. J. A. Sloane_