A036822 Number of partitions satisfying cn(1,5) = cn(4,5) = 0.
0, 1, 1, 1, 2, 2, 3, 4, 4, 7, 6, 10, 11, 13, 18, 19, 25, 30, 33, 45, 47, 61, 70, 81, 100, 111, 135, 157, 177, 218, 238, 288, 328, 374, 443, 495, 579, 663, 747, 878, 973, 1134, 1281, 1448, 1670, 1863, 2135, 2414, 2705, 3103
Offset: 1
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A036820.
Programs
-
Maple
c := proc(L,i,n) local a,p; a := 0 ; for p in L do if modp(p,n) = i then a := a+1 ; end if; end do: a ; end proc: A036822 := proc(n) local a ,p; a := 0 ; for p in combinat[partition](n) do if c(p,1,5) = 0 then if c(p,4,5) = 0 then a := a+1 ; end if; end if; end do: a ; end proc: # R. J. Mathar, Oct 19 2014
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[Product[1/((1 - x^(5*k)) * (1 - x^(5*k-2)) * (1 - x^(5*k-3))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2016 *)
Formula
Convolution inverse of A113428. - George Beck, May 21 2016
G.f.: Product_{k>=1} 1/((1 - x^(5*k)) * (1 - x^(5*k - 2)) * (1 - x^(5*k - 3))). - Vaclav Kotesovec, Jul 05 2016
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2*sqrt(2*(5+sqrt(5)))*n). - Vaclav Kotesovec, Jul 05 2016
Comments