cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036822 Number of partitions satisfying cn(1,5) = cn(4,5) = 0.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 4, 4, 7, 6, 10, 11, 13, 18, 19, 25, 30, 33, 45, 47, 61, 70, 81, 100, 111, 135, 157, 177, 218, 238, 288, 328, 374, 443, 495, 579, 663, 747, 878, 973, 1134, 1281, 1448, 1670, 1863, 2135, 2414, 2705, 3103
Offset: 1

Views

Author

Keywords

Comments

For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: (1=4 := 0).
a(n) is the number of partitions with parts congruent to 0, 2 or 3 mod 5. - George Beck, Aug 08 2020

Crossrefs

Cf. A036820.

Programs

  • Maple
    c := proc(L,i,n)
        local a,p;
        a := 0 ;
        for p in L do
            if modp(p,n) = i then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    A036822 := proc(n)
        local a ,p;
        a := 0 ;
        for p in combinat[partition](n) do
            if c(p,1,5) = 0 then
                if c(p,4,5) = 0 then
                    a := a+1 ;
                end if;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 19 2014
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[Product[1/((1 - x^(5*k)) * (1 - x^(5*k-2)) * (1 - x^(5*k-3))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2016 *)

Formula

Convolution inverse of A113428. - George Beck, May 21 2016
G.f.: Product_{k>=1} 1/((1 - x^(5*k)) * (1 - x^(5*k - 2)) * (1 - x^(5*k - 3))). - Vaclav Kotesovec, Jul 05 2016
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2*sqrt(2*(5+sqrt(5)))*n). - Vaclav Kotesovec, Jul 05 2016