This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A036838 #16 Feb 02 2020 21:04:45 %S A036838 1,2,1,2,3,1,3,4,4,1,3,6,6,5,1,4,7,11,9,6,1,4,11,14,18,12,7,1,5,12,25, %T A036838 26,27,16,8,1,5,17,30,50,44,39,20,9,1,6,19,47,66,92,70,54,25,10,1,6, %U A036838 24,57,113,132,158,105,72,30,11,1,7,26,78,149,245,246 %N A036838 Triangle read by rows: T(n,k) = value of Schoenheim bound L_1(n+2,k+2,k+1) on covering numbers (0 <= k <= n). %C A036838 The relation with Schoenheim's notation is L(v,k,t,l) = psi(k,t,l,v). - _R. J. Mathar_, Aug 12 2012 %D A036838 W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1. %H A036838 J. Schoenheim, <a href="http://projecteuclid.org/euclid.pjm/1103033815">On coverings</a>, Pac. J. Math. 14 (4) (1964) 1405-1411. %H A036838 <a href="/index/Cor#covnum">Index entries for covering numbers</a> %e A036838 Triangle begins %e A036838 1; %e A036838 2, 1; %e A036838 2, 3, 1; %e A036838 3, 4, 4, 1; %e A036838 3, 6, 6, 5, 1; %e A036838 4, 7, 11, 9, 6, 1; %e A036838 4, 11, 14, 18, 12, 7, 1; %e A036838 5, 12, 25, 26, 27, 16, 8, 1; %e A036838 ... %p A036838 L := proc(v,k,t,l) %p A036838 local i,t1; %p A036838 t1 := l; %p A036838 for i from v-t+1 to v do %p A036838 t1 := ceil(t1*i/(i-(v-k))); %p A036838 od: %p A036838 t1; %p A036838 end; %p A036838 A036838 := proc(n,k) %p A036838 L(n+2,k+2,k+1,1) ; %p A036838 end proc: %t A036838 L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v-t+1, i <= v, i++, t1 = Ceiling[t1*i/(i-(v-k))]]; t1]; A036838[n_, k_] := L[n+2, k+2, k+1, 1]; Table[A036838[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 16 2013, translated from Maple *) %Y A036838 Columns give A011975, A036831, A036832, A036833, A036834, A036835, A036836, A014125, A036830, A036837. %K A036838 nonn,tabl,easy,nice %O A036838 0,2 %A A036838 _N. J. A. Sloane_, Jan 11 2002