This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037000 #35 Feb 16 2025 08:32:37 %S A037000 1,3,37,40,49,68,94,95,103,110,138,148,153,154,155,163,168,174,175, %T A037000 198,206,220,238,243,246,250,269,281,295,297,314,319,324,342,344,362, %U A037000 363,381,385,390,393,395,396,417,424,427,428,432,437,438,442,445,446 %N A037000 Positions of the digit '1' in the decimal expansion of Pi. %C A037000 From _M. F. Hasler_, Jul 28 2024: (Start) %C A037000 "Positions" are indices n of digits d(n) such that Pi = Sum_{n >= 0} d(n)/10^n; see A053745 for the variant where the initial digit 3 is at position 1. %C A037000 The first few primes in this sequence are 3, 37, 103, 163, 269, 281, 499, 541, 547, 587, 607, 709, 797, 859, 887, 971, 983, 997, ... (End) %H A037000 Robert Israel, <a href="/A037000/b037000.txt">Table of n, a(n) for n = 1..10137</a> %H A037000 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiDigits.html">Pi Digits</a> %F A037000 Conjecturally, a(n) ~ 10n. %p A037000 P:= convert(evalf[100000](Pi),string)[3..-1]: %p A037000 select(t -> P[t]="1",[$1..length(P)-1]); # _Robert Israel_, Dec 22 2013 %t A037000 Flatten @ Position[ RealDigits[Pi - 3, 10, 500][[1]], 1] (* _Robert G. Wilson v_, Mar 07 2011 *) %o A037000 (PARI) A037000_upto(N=500, d=1)={localprec(N+20); [i-1|i<-[1..#N=digits(Pi\10^-N)], N[i]==d]} \\ _M. F. Hasler_, Jul 28 2024 %Y A037000 Cf. A000796 (decimals of Pi), A037001 - A037008 and A036974 (positions of other digits), A053745 (variant with all values increased by 1). %K A037000 base,nonn %O A037000 1,2 %A A037000 Nicolau C. Saldanha (nicolau(AT)mat.puc-rio.br)