cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037001 Positions of the digit '2' in the decimal expansion of Pi (where positions 0, 1, 2,... refer to the digits 3, 1, 4,...).

This page as a plain text file.
%I A037001 #26 Feb 16 2025 08:32:37
%S A037001 6,16,21,28,33,53,63,73,76,83,89,93,102,112,114,135,136,140,149,160,
%T A037001 165,173,185,186,203,221,229,241,244,260,275,280,289,292,298,302,326,
%U A037001 329,333,335,337,354,374,380,406,423,435,456,462,477,479,484,485,500
%N A037001 Positions of the digit '2' in the decimal expansion of Pi (where positions 0, 1, 2,... refer to the digits 3, 1, 4,...).
%C A037001 The first few primes in this sequence are 53, 73, 83, 89, 149, 173, 229, 241, 337, 479, 571, 613, 661, 757, 829, 877, 911, 977, 991, ... - _M. F. Hasler_, Jul 28 2024
%H A037001 Amiram Eldar, <a href="/A037001/b037001.txt">Table of n, a(n) for n = 1..10000</a>
%H A037001 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiDigits.html">Pi Digits.</a>
%H A037001 <a href="/index/Ph#Pi314">OEIS index to sequences related to Pi</a>.
%F A037001 a(n) ~ 10*n if Pi is normal, as generally assumed. - _M. F. Hasler_, Jul 28 2024
%t A037001 Flatten @ Position[ RealDigits[Pi - 3, 10, 500][[1]], 2] (* _Robert G. Wilson v_, Mar 07 2011 *)
%o A037001 (PARI) A037001_upto(N=999, d=2)={localprec(N+20); [i-1|i<-[1..#N=digits(Pi\10^-N)], N[i]==d]} \\ _M. F. Hasler_, Jul 28 2024
%Y A037001 Cf. A000796 (decimal expansion (or digits) of Pi).
%Y A037001 Cf. A053746 (= a(n) + 1: the same with different offset).
%Y A037001 Cf. A037000, A037002, A037003, A037004, A037005, A036974, A037006, A037007, A037008 (similar for digits 1, ..., 9 and 0).
%Y A037001 Cf. A035117 (first occurrence of at least n '1's), A050281 (n '2's), A050282, A050283, A050284, A050286, A050287, A048940 (n '9's).
%Y A037001 Cf. A096755 (first occurrence of exactly n '1's), A096756, A096757, A096758, A096759, A096760, A096761, A096762, A096763 (exactly n '9's), A050279 (exactly n '0's).
%Y A037001 Cf. A121280 = A068987 - 1: position of "123...n" in Pi's decimals.
%Y A037001 Cf. A176341: first occurrence of n in Pi's digits.
%K A037001 nonn,base
%O A037001 1,1
%A A037001 Nicolau C. Saldanha (nicolau(AT)mat.puc-rio.br)