cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037007 Positions of the digit '9' in the decimal expansion of Pi, where positions 0, 1, 2,... correspond to digits 3, 1, 4, ....

This page as a plain text file.
%I A037007 #30 Feb 16 2025 08:32:37
%S A037007 5,12,14,30,38,42,44,45,55,58,62,79,80,100,122,129,144,169,180,187,
%T A037007 190,193,199,208,214,247,249,259,284,294,328,331,336,341,353,356,388,
%U A037007 391,399,414,416,418,422,433,440,459,460,465,482,487,496,498,501,527
%N A037007 Positions of the digit '9' in the decimal expansion of Pi, where positions 0, 1, 2,... correspond to digits 3, 1, 4, ....
%C A037007 Primes in this sequence are 5, 79, 193, 199, 331, 353, 433, 487, 941, ... - _M. F. Hasler_, Jul 29 2024
%H A037007 Amiram Eldar, <a href="/A037007/b037007.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..369 from M. F. Hasler)
%H A037007 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiDigits.html">Pi Digits.</a>
%H A037007 <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a>
%F A037007 a(n) = A053753(n) - 1. - _M. F. Hasler_, Mar 20 2017
%F A037007 a(n) ~ 10*n if Pi is normal (as generally assumed, but yet unproved). - _M. F. Hasler_, Jul 29 2024
%e A037007 The first digit '9' occurs in 3.1415926... at the 5th place after the decimal point, whence a(1) = 5.
%t A037007 Flatten @ Position[ RealDigits[Pi - 3, 10, 500][[1]], 9] (* _Robert G. Wilson v_, Mar 07 2011 *)
%o A037007 (PARI) A037007_upto(N=999, d=9)={localprec(N+20); [i-1|i<-[1..#N=digits(Pi\10^-N)], N[i]==d]} \\ _M. F. Hasler_, Jul 29 2024
%Y A037007 Cf. A000796 (decimals of Pi).
%Y A037007 Cf. A053753 (variant with all values increased by 1).
%Y A037007 Cf. A037000, A037001, A037002, A037003, A037004, A037005, A036974, A037006, A037008 (similar for digits 1, ..., 8 and 0).
%Y A037007 Cf. A048940, A096763 (starting position of at least/exactly n '9's).
%K A037007 nonn,base
%O A037007 1,1
%A A037007 Nicolau C. Saldanha (nicolau(AT)mat.puc-rio.br)