This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037020 #41 Feb 21 2022 01:00:32 %S A037020 4,8,21,27,32,35,39,50,55,57,63,65,77,85,98,111,115,125,128,129,155, %T A037020 161,171,175,185,187,189,201,203,205,209,221,235,237,242,245,265,275, %U A037020 279,291,299,305,309,319,323,324,325,327,335,338,341,365,371,377,381 %N A037020 Numbers whose sum of proper (or aliquot) divisors is a prime. %C A037020 Assuming the Goldbach conjecture, it is easy to show that all primes, except 2 and 5, are the sum of the proper divisors of some number. - _T. D. Noe_, Nov 29 2006 %H A037020 T. D. Noe, <a href="/A037020/b037020.txt">Table of n, a(n) for n = 1..10000</a> %H A037020 Paul Pollack, <a href="https://doi.org/10.1215/ijm/1427897171">Some arithmetic properties of the sum of proper divisors and the sum of prime divisors</a>, Illinois J. Math. 58:1 (2014), pp. 125-147. %F A037020 A001065(a(n)) is in A000040. %F A037020 Pollack proves that a(n) >> n log n. - _Charles R Greathouse IV_, Jun 28 2021 %e A037020 The aliquot divisors of 27 are 1, 3, and 9, whose sum is 13, a prime, so 27 is a term. %t A037020 Select[Range[400],PrimeQ[DivisorSigma[1,#]-#]&] (* _Harvey P. Dale_, May 09 2011 *) %o A037020 (Haskell) %o A037020 a037020 n = a037020_list !! (n-1) %o A037020 a037020_list = filter ((== 1) . a010051' . a001065) [1..] %o A037020 -- _Reinhard Zumkeller_, Nov 01 2015, Sep 15 2011 %o A037020 (PARI) isok(n) = isprime(sigma(n) - n); \\ _Michel Marcus_, Nov 01 2016 %o A037020 (Magma) [n: n in [2..500] | IsPrime(SumOfDivisors(n)-n)]; // _Vincenzo Librandi_, Nov 01 2016 %Y A037020 Cf. A001065, A053868, A053869, A010051. %K A037020 nonn,easy,nice %O A037020 1,1 %A A037020 _Felice Russo_, Dec 11 1999