This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037073 #32 Oct 30 2023 18:06:10 %S A037073 1,2,7,8,12,14,15,29,34,44,51,62,68,76,79,91,99,100,107,125,142,147, %T A037073 156,162,163,173,190,202,212,231,245,252,253,264,295,306,317,330,331, %U A037073 355,366,376,377,386,397,442,448,453,462,469,481,491,498,502,516,547 %N A037073 Numbers k such that (6*k)^2 is the sum of a twin prime pair. %H A037073 Amiram Eldar, <a href="/A037073/b037073.txt">Table of n, a(n) for n = 1..10000</a> %H A037073 C. K. Caldwell, <a href="https://t5k.org/glossary/page.php?sort=TwinPrime">Twin primes</a> %F A037073 a(n) = A173165(n)/3. - _M. F. Hasler_, Oct 30 2023 %e A037073 E.g. n=44 -> (6*44)^2 = 69696 = 34847 + 34849 (twin prime pair). %p A037073 isa := n -> isprime(n) and isprime(n+2) and issqr(2*n+2): %p A037073 select(isa, [$4..1000000]): map(n -> sqrt(2*n+2)/6, %); # _Peter Luschny_, Jan 05 2020 %t A037073 Select[Sqrt[Plus@@@Select[Partition[Prime[Range[4*10^5]],2,1],Differences[#]=={2} &]/36],IntegerQ] (* _Jayanta Basu_, May 26 2013 *) %o A037073 (PARI) is(n)=isprime(18*n^2-1)&&isprime(18*n^2+1) \\ _M. F. Hasler_, Oct 30 2023 %Y A037073 Cf. A000290, A001359, A006512, A173165. %Y A037073 A152786 = 6*A037073. - _Zak Seidov_, Aug 20 2010 %K A037073 nonn %O A037073 1,2 %A A037073 _G. L. Honaker, Jr._ %E A037073 More terms from _Jud McCranie_, Dec 30 2000