This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037096 #28 Jan 14 2024 08:59:18 %S A037096 1,2,0,204,30840,3743473440,400814250895866480, %T A037096 192435610587299441243182587501623263200, %U A037096 2911899996313975217187797869354128351340558818020188112521784134070351919360 %N A037096 Periodic vertical binary vectors computed for powers of 3: a(n) = Sum_{k=0 .. (2^n)-1} (floor((3^k)/(2^n)) mod 2) * 2^k. %C A037096 This sequence can be also computed with a recurrence that does not explicitly refer to 3^n. See the C program. %C A037096 Conjecture: For n >= 3, each term a(n), when considered as a GF(2)[X] polynomial, is divisible by the GF(2)[X] polynomial (x + 1) ^ A055010(n-1). If this holds, then for n >= 3, a(n) = A048720(A136386(n), A048723(3,A055010(n-1))). %D A037096 S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119. %H A037096 Antti Karttunen, <a href="/A037096/b037096.txt">Table of n, a(n) for n = 0..11</a> %H A037096 Antti Karttunen, <a href="/A036284/a036284.c.txt">C program for computing this sequence</a>. %H A037096 S. Wolfram, <a href="http://www.wolframscience.com/nksonline/page-119">A New Kind of Science, Wolfram Media Inc., (2002), p. 119</a>. %F A037096 a(n) = Sum_{k=0 .. A000225(n)} (floor(A000244(k)/(2^n)) mod 2) * 2^k. %F A037096 Other identities and observations: %F A037096 For n >= 2, a(n) = A000215(n-1)*A037097(n) = A048720(A037097(n), A048723(3, A000079(n-1))). %e A037096 When powers of 3 are written in binary (see A004656), under each other as: %e A037096 000000000001 (1) %e A037096 000000000011 (3) %e A037096 000000001001 (9) %e A037096 000000011011 (27) %e A037096 000001010001 (81) %e A037096 000011110011 (243) %e A037096 001011011001 (729) %e A037096 100010001011 (2187) %e A037096 it can be seen that the bits in the n-th column from the right can be arranged in periods of 2^n: 1, 2, 4, 8, ... This sequence is formed from those bits: 1, is binary for 1, thus a(0) = 1. 01, reversed is 10, which is binary for 2, thus a(1) = 2, 0000 is binary for 0, thus a(2)=0, 000110011, reversed is 11001100 = A007088(204), thus a(3) = 204. %p A037096 a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n))-1); %p A037096 bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2); %Y A037096 Cf. A036284, A037095, A037097, A136386 for related sequences. %Y A037096 Cf. A000079, A000215, A000225, A000244, A004656, A007088, A048720, A048723, A055010. %Y A037096 Cf. also A004642, A265209, A265210 (for 2^n written in base 3). %K A037096 nonn,base %O A037096 0,2 %A A037096 _Antti Karttunen_, Jan 29 1999 %E A037096 Entry revised by _Antti Karttunen_, Dec 29 2007 %E A037096 Name changed and the example corrected by _Antti Karttunen_, Dec 05 2015