This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037143 #56 Aug 24 2024 05:56:08 %S A037143 1,2,3,4,5,6,7,9,10,11,13,14,15,17,19,21,22,23,25,26,29,31,33,34,35, %T A037143 37,38,39,41,43,46,47,49,51,53,55,57,58,59,61,62,65,67,69,71,73,74,77, %U A037143 79,82,83,85,86,87,89,91,93,94,95,97,101,103,106,107,109,111,113,115,118 %N A037143 Numbers with at most 2 prime factors (counted with multiplicity). %C A037143 A001222(a(n)) <= 2; A054576(a(n)) = 1. - _Reinhard Zumkeller_, Mar 10 2006 %C A037143 Products of two noncomposite numbers. - _Juri-Stepan Gerasimov_, Apr 15 2010 %C A037143 Also, numbers with permutations of all divisors only with coprime adjacent elements: A109810(a(n)) > 0. - _Reinhard Zumkeller_, May 24 2010 %C A037143 A060278(a(n)) = 0. - _Reinhard Zumkeller_, Apr 05 2013 %C A037143 1 together with numbers k such that sigma(k) + phi(k) - d(k) = 2k - 2. - _Wesley Ivan Hurt_, May 03 2015 %C A037143 Products of two not necessarily distinct terms of A008578 (the same relation between A000040 and A001358). - _Flávio V. Fernandes_, May 28 2021 %H A037143 Felix Fröhlich, <a href="/A037143/b037143.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Reinhard Zumkeller) %H A037143 Andreas Weingartner, <a href="https://arxiv.org/abs/2303.16819">Uniform distribution of alpha*n modulo one for a family of integer sequences</a>, arXiv:2303.16819 [math.NT], 2023. %p A037143 with(numtheory): A037143:=n->`if`(bigomega(n)<3,n,NULL): seq(A037143(n), n=1..200); # _Wesley Ivan Hurt_, May 03 2015 %t A037143 Select[Range[120], PrimeOmega[#] <= 2 &] (* _Ivan Neretin_, Aug 16 2015 *) %o A037143 (Haskell) %o A037143 a037143 n = a037143_list !! (n-1) %o A037143 a037143_list = 1 : merge a000040_list a001358_list where %o A037143 merge xs'@(x:xs) ys'@(y:ys) = %o A037143 if x < y then x : merge xs ys' else y : merge xs' ys %o A037143 -- _Reinhard Zumkeller_, Dec 18 2012 %o A037143 (PARI) is(n)=bigomega(n)<3 \\ _Charles R Greathouse IV_, Apr 29 2015 %o A037143 (Python) %o A037143 from math import isqrt %o A037143 from sympy import primepi, primerange %o A037143 def A037143(n): %o A037143 def f(x): return int(n-2+x-primepi(x)-sum(primepi(x//k)-a for a,k in enumerate(primerange(isqrt(x)+1)))) %o A037143 kmin, kmax = 1,2 %o A037143 while f(kmax) >= kmax: %o A037143 kmax <<= 1 %o A037143 while True: %o A037143 kmid = kmax+kmin>>1 %o A037143 if f(kmid) < kmid: %o A037143 kmax = kmid %o A037143 else: %o A037143 kmin = kmid %o A037143 if kmax-kmin <= 1: %o A037143 break %o A037143 return kmax # _Chai Wah Wu_, Aug 23 2024 %Y A037143 Union of A008578 and A001358. Complement of A033942. %Y A037143 Cf. A063928, A001222, A054576, A109810, A060278. %Y A037143 A101040(a(n))=1 for n>1. %Y A037143 Subsequence of A037144. - _Reinhard Zumkeller_, May 24 2010 %Y A037143 A098962 and A139690 are subsequences. %K A037143 nonn %O A037143 1,2 %A A037143 _N. J. A. Sloane_ %E A037143 More terms from _Henry Bottomley_, Aug 15 2001