This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037145 #19 Jul 08 2025 22:02:57 %S A037145 1,0,1,1,2,2,4,3,6,6,9,9,14,13,19,20,26,27,36,36,47,49,60,63,78,80,97, %T A037145 102,120,126,149,154,180,189,216,227,260,270,307,322,361,378,424,441, %U A037145 492,515,568,594,656,682,750 %N A037145 Expansion of 1/((1-x^2)(1-x^3)...(1-x^6)). %C A037145 Also, Molien series for invariants of finite Coxeter group A_5. The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i). - _N. J. A. Sloane_, Jan 11 2016 %D A037145 J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59. %H A037145 <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 1, 1, 0, 0, -2, -2, -1, 0, 1, 2, 2, 0, 0, -1, -1, -1, 0, 1). %t A037145 CoefficientList[Series[1/Times@@Table[(1-x^n),{n,2,6}],{x,0,50}],x] (* _Harvey P. Dale_, Dec 25 2012 *) %Y A037145 Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781. %Y A037145 Cf. A001402 (partial sums). %K A037145 nonn,easy %O A037145 0,5 %A A037145 _N. J. A. Sloane_