cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037148 Numerators of Fourier coefficients of Eisenstein series of degree 2 and weight 12 when evaluated at Gram(A_2)*z.

This page as a plain text file.
%I A037148 #20 Jul 08 2025 22:03:10
%S A037148 1,0,196560,22266840960,32657336384400,488671648133760,
%T A037148 53439465983183280,1517285377810500480,33146268593842731600,
%U A037148 495735471753920012160,5599704694679105905440,50142366540860643504000,370980488114849951891280,2338140291564951182050560
%N A037148 Numerators of Fourier coefficients of Eisenstein series of degree 2 and weight 12 when evaluated at Gram(A_2)*z.
%D A037148 Helmut Klingen, Introductory Lectures on Siegel Modular Forms, p. 123.
%H A037148 N. J. A. Sloane, <a href="/A037150/a037150.pdf">Notes on Two-dimensional Theta Series of Lattices</a> (Notes on some joint work with Eric M. Rains), pages 96-115, circa Jun 08 1998, of N. J. A. Sloane's notebook "Lattices Volume 79".
%H A037148 <a href="/index/Ed#Eisen">Index entries for sequences related to Eisenstein series</a>
%F A037148 x^24 - 144*x^18*y + (3480192/691)*x^12*y^2 - (2037901234176/53678953)*x^6*y^3 + (21009383424000/53678953)*y^4, x = phi_0(z), y = Delta_12(z). (see A037150 for definitions and Maple code - _N. J. A. Sloane_, Dec 12 2020)
%Y A037148 Cf. A037149, A037150.
%K A037148 nonn,easy,frac
%O A037148 0,3
%A A037148 _N. J. A. Sloane_
%E A037148 More terms from _Sean A. Irvine_, Dec 13 2020