This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037156 #40 Oct 11 2023 17:55:11 %S A037156 1,55,5050,500500,50005000,5000050000,500000500000,50000005000000, %T A037156 5000000050000000,500000000500000000,50000000005000000000, %U A037156 5000000000050000000000,500000000000500000000000,50000000000005000000000000,5000000000000050000000000000 %N A037156 a(n) = 10^n*(10^n+1)/2. %C A037156 Sum of first 10^n positive integers. - _Omar E. Pol_, May 03 2015 %D A037156 C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 328. %H A037156 Brian Hayes, <a href="http://www.americanscientist.org/issues/pub/gausss-day-of-reckoning">Gauss's Day of Reckoning</a>, American Scientist %H A037156 Bill Johnson, <a href="http://www.wbilljohnson.com/journal/math/gauss.htm">The great Gauss summation trick</a> %H A037156 C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," <a href="http://www.zentralblatt-math.org/zmath/en/search/?q=an:0983.00008&format=complete">Zentralblatt review</a> %H A037156 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (110, -1000). %F A037156 a(n) = A000533(n) * A093143(n). - _Omar E. Pol_, May 03 2015 %F A037156 From _Chai Wah Wu_, May 28 2016: (Start) %F A037156 a(n) = 110*a(n-1) - 1000*a(n-2). %F A037156 G.f.: (1 - 55*x)/((10*x - 1)*(100*x - 1)). %F A037156 (End) %F A037156 a(n) = sqrt(A038544(n)). - _Bernard Schott_, Jan 20 2022 %e A037156 From _Omar E. Pol_, May 03 2015: (Start) %e A037156 For n = 0; a(0) = 1 = 1 * 1 = 1 %e A037156 For n = 1; a(1) = 1 + 2 + ...... + 9 + 10 = 11 * 5 = 55 %e A037156 For n = 2; a(2) = 1 + 2 + .... + 99 + 100 = 101 * 50 = 5050 %e A037156 For n = 3; a(3) = 1 + 2 + .. + 999 + 1000 = 1001 * 500 = 500500 %e A037156 ... %e A037156 (End) %t A037156 LinearRecurrence[{110,-1000},{1,55},20] (* _Harvey P. Dale_, Oct 11 2023 *) %Y A037156 A subsequence of the triangular numbers A000217. %Y A037156 Cf. A038544. %K A037156 easy,nonn %O A037156 0,2 %A A037156 _Marvin Ray Burns_ %E A037156 Corrected by _T. D. Noe_, Nov 07 2006