cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037169 a(n) = prime(n) * Product_{k=0..n-2} prime(n-k) mod prime(n-k-1).

This page as a plain text file.
%I A037169 #14 Aug 13 2022 11:26:07
%S A037169 2,3,10,28,176,416,2176,4864,23552,178176,380928,2727936,12091392,
%T A037169 25362432,110886912,750256128,5011144704,10362028032,68287463424,
%U A037169 289457307648,595222069248,3864866586624,16242224136192,104498164924416,911130067206144,3794809764446208,7739909024514048
%N A037169 a(n) = prime(n) * Product_{k=0..n-2} prime(n-k) mod prime(n-k-1).
%C A037169 If A_n is the n X n matrix a(i,j)=min(prime(i), prime(j)) then det(M_n)/det(A_n)=prime(n)/2.
%F A037169 Let M_n be the n X n matrix m(i, j)=Max(prime(i), prime(j)); then a(n)=(-1)^(n+1)*det(M_n). - _Benoit Cloitre_, May 11 2002
%t A037169 Table[Prime[n]Product[Mod[Prime[n-k],Prime[n-k-1]],{k,0,n-2}],{n,30}] (* _Harvey P. Dale_, Jul 16 2017 *)
%o A037169 (PARI) a(n) = prime(n)*prod(k=0, n-2, prime(n-k) % prime(n-k-1)); \\ _Michel Marcus_, Aug 13 2022
%K A037169 easy,nonn
%O A037169 1,1
%A A037169 Armand Turpel (armandt(AT)unforgettable.com)
%E A037169 Corrected and extended by Larry Reeves (larryr(AT)acm.org), Sep 27 2000
%E A037169 More terms from _Michel Marcus_, Aug 13 2022