This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037233 #33 Feb 16 2025 08:32:37 %S A037233 5,8,19,26,67,80 %N A037233 Order of (4,n) cage, i.e., minimal order of 4-regular graph of girth n. %C A037233 a(9) <= 275, a(10) <= 384, a(12) = 728. - From Royle's page via _Jason Kimberley_, Dec 26 2012 %H A037233 Andries E. Brouwer, <a href="http://www.win.tue.nl/~aeb/graphs/cages/cages.html">Cages</a> %H A037233 Geoff Exoo, <a href="http://ginger.indstate.edu/ge/CAGES">Regular graphs of given degree and girth</a> %H A037233 G. Exoo and R. Jajcay, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS16">Dynamic cage survey</a>, Electr. J. Combin. (2008, 2011). %H A037233 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cages/allcages.html">Cages of higher valency</a> %H A037233 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CageGraph.html">Cage Graph</a> (claims too much) %F A037233 a(n) >= A062318(n+1). - _Jason Kimberley_, Dec 21 2012 %Y A037233 Orders of cages: A054760 (n,k), A000066 (3,n), this sequence (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5). %K A037233 hard,nonn %O A037233 3,1 %A A037233 _Erich Friedman_ %E A037233 Extended by _Jason Kimberley_, Apr 25 2010