This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037246 #12 Jul 08 2025 22:05:35 %S A037246 1,0,0,1,1,1,3,5,10,16,38,66,143,268,564,1100,2282,4546,9382,18977, %T A037246 39112,79891,164917,339195,702041,1451628,3013442,6257561,13029327, %U A037246 27152492,56698062,118518363,248137778,520085704,1091520783,2293229235,4823466463 %N A037246 Total number of fixed points in free homeomorphically irreducible trees with n nodes. %H A037246 F. Harary and E. M. Palmer, <a href="http://dx.doi.org/10.1017/S0305004100055857">Probability that a point of a tree is fixed</a>, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415. %H A037246 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A037246 Reference gives a recurrence. %p A037246 Hpj := proc(Hofxy,p,j) %p A037246 coeftayl(Hofxy,x=0,p) ; %p A037246 coeftayl(%,y=0,j) ; %p A037246 simplify(%) ; %p A037246 end proc: %p A037246 Hxy := proc(x,y,pmax,hxyinit) %p A037246 if pmax = 0 then %p A037246 x*y ; %p A037246 else %p A037246 pp := 1; %p A037246 for p from 1 to pmax do %p A037246 t :=1 ; %p A037246 for j from 1 to p do %p A037246 t := t*(1+x^p*y^j+add(x^(k*p),k=2..pmax+1))^Hpj(hxyinit,p,j) ; %p A037246 end do: %p A037246 pp := pp*t ; %p A037246 end do: %p A037246 x*y*%/(1+x*y) ; %p A037246 end if; %p A037246 end proc: %p A037246 hxyfin := Hxy(x,y,0,0) ; %p A037246 for pmax from 2 to 40 do %p A037246 Hxy(x,y,pmax,hxyfin) ; %p A037246 taylor(%,x=0,pmax+2) ; %p A037246 convert(%,polynom) ; %p A037246 taylor(%,y=0,pmax+2) ; %p A037246 hxyfin := convert(%,polynom) ; %p A037246 hxy := (1+x*y)*hxyfin+subs({x=x^2,y=1},hxyfin)*(1-x*y)-hxyfin^2*(1+x*y)/2+subs({x=x^2,y=y^2},hxyfin)*(x*y-1)/2 ; %p A037246 for p from 0 to pmax do %p A037246 ap := 0 ; %p A037246 for j from 1 to p do %p A037246 ap := ap+j*Hpj(hxy,p,j) ; %p A037246 end do: %p A037246 printf("%d,",ap) ; %p A037246 end do: %p A037246 print() ; %p A037246 end do: # _R. J. Mathar_, Apr 13 2019 %Y A037246 Cf. A005200-A005202. %K A037246 nonn,easy %O A037246 1,7 %A A037246 _N. J. A. Sloane_ %E A037246 More terms from _R. J. Mathar_, Apr 13 2019