This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037250 #23 Jun 14 2024 22:31:09 %S A037250 0,0,20,180,816,2600,6660,14700,29120,53136,90900,147620,229680, %T A037250 344760,501956,711900,986880,1340960,1790100,2352276,3047600,3898440, %U A037250 4929540,6168140,7644096,9390000,11441300 %N A037250 a(n) = n^2*(n^2 + 1)*(n-1). %C A037250 Conjecture: satisfies a linear recurrence having signature (6, -15, 20, -15, 6, -1). - _Harvey P. Dale_, Jul 27 2019 %C A037250 This conjecture is true since for any series a(n) = P(n) (P polynomial in n of degree d) there is an o.g.f. Q(x)/(1-x)^(d+1). - _Georg Fischer_, Feb 17 2021 %D A037250 R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14. %D A037250 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi. %H A037250 Vincenzo Librandi, <a href="/A037250/b037250.txt">Table of n, a(n) for n = 0..10000</a> %H A037250 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %p A037250 seq(coeff(series(4*x^2*(x^3+9*x^2+15*x+5)/(x-1)^6, x, n+1),x,n), n = 0..30); # _Georg Fischer_, Feb 17 2021 %t A037250 Table[n^2 (n^2+1)(n-1),{n,0,30}] (* _Harvey P. Dale_, Jul 27 2019 *) %o A037250 (Magma) [n^2*(n^2+1)*(n-1): n in [0..30]]; // _Vincenzo Librandi_, Sep 14 2011 %Y A037250 Cf. A064487, A064583. %K A037250 nonn,easy %O A037250 0,3 %A A037250 _N. J. A. Sloane_