cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037268 Sum of reciprocals of digits = 1.

This page as a plain text file.
%I A037268 #24 Jul 23 2025 18:57:28
%S A037268 1,22,236,244,263,326,333,362,424,442,623,632,2488,2666,2848,2884,
%T A037268 3366,3446,3464,3636,3644,3663,4288,4346,4364,4436,4444,4463,4634,
%U A037268 4643,4828,4882,6266,6336,6344,6363,6434,6443,6626,6633,6662,8248,8284,8428,8482,8824
%N A037268 Sum of reciprocals of digits = 1.
%C A037268 This sequence has 1209 terms.
%C A037268 Intersection of A037264 and A034708: A214949(a(n))*A214950(a(n))*A168046(a(n)) = 1. - _Reinhard Zumkeller_, Aug 02 2012
%H A037268 Nathaniel Johnston, <a href="/A037268/b037268.txt">Table of n, a(n) for n = 1..1209</a> (full sequence)
%p A037268 A037268 := proc(n) option remember: local d,k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=convert(k,base,10): if(not member(0,d) and add(1/d[j],j=1..nops(d))=1)then return k: fi: od: end: seq(A037268(n),n=1..50); # _Nathaniel Johnston_, May 28 2011
%t A037268 Select[Range[10000],Total[1/(IntegerDigits[#]/.(0->1))]==1&] (* _Harvey P. Dale_, Jul 23 2025 *)
%o A037268 (Haskell)
%o A037268 a037268 n = a037268_list !! (n-1)
%o A037268 a037268_list = filter ((== 1) . a168046) $
%o A037268                       takeWhile (<= 999999999) a214959_list
%o A037268 -- _Reinhard Zumkeller_, Aug 02 2012
%o A037268 (PARI) lista(nn) = {for (n=1, nn, d = digits(n); if (vecmin(d) && (sum(k=1, #d, 1/d[k])==1), print1(n, ", ")););} \\ _Michel Marcus_, Jul 06 2015
%o A037268 (Python)
%o A037268 from fractions import Fraction
%o A037268 def ok(n):
%o A037268   sn = str(n)
%o A037268   return False if '0' in sn else sum(Fraction(1, int(d)) for d in sn) == 1
%o A037268 def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
%o A037268 print(aupto(8824)) # _Michael S. Branicky_, Jan 22 2021
%Y A037268 Cf. A020473, A037264, A038034.
%Y A037268 Subsequence of A214959.
%K A037268 easy,nonn,base,fini,full
%O A037268 1,2
%A A037268 _N. J. A. Sloane_
%E A037268 More terms from _Christian G. Bower_, Jun 15 1998
%E A037268 Two missing terms inserted by _Nathaniel Johnston_, May 28 2011