This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037293 #78 May 02 2025 01:26:36 %S A037293 1,2,6,70,12870,601080390,1832624140942590534, %T A037293 23951146041928082866135587776380551750, %U A037293 5768658823449206338089748357862286887740211701975162032608436567264518750790 %N A037293 a(n) = Sum_{i=0..2^(n-1)} binomial(2^(n-1), i)^2. %C A037293 For n >= 1, a(n) is the number of n-variable balanced Boolean functions. A Boolean function is balanced if it takes the values 0 and 1 an equal number of times. - _Aniruddha Biswas_, Nov 05 2024 %H A037293 Seiichi Manyama, <a href="/A037293/b037293.txt">Table of n, a(n) for n = 0..11</a> %H A037293 Aniruddha Biswas and Palash Sarkar, <a href="https://arxiv.org/abs/2304.14069">Counting unate and balanced monotone Boolean functions</a>, arXiv:2304.14069 [math.CO], 2023. %H A037293 Aniruddha Biswas and Palash Sarkar, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Biswas/biswas6.html">Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See p. 2. %H A037293 Niklas G. Johansson, <a href="http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A840938">Efficient Simulation of the Deutsch-Jozsa Algorithm</a>, Master's Project, Department of Electrical Engineering & Department of Physics, Chemistry and Biology, Linkoping University, April, 2015. See Eq. (3.15). %F A037293 a(n) = A001405(2^n). - _Labos Elemer_, Apr 11 2001 %F A037293 a(n) ~ 2^(2^n - n/2 + 1/2)/ sqrt(Pi). - _Vaclav Kotesovec_, Nov 13 2014 %F A037293 a(n) = A000984(2^(n-1)) = binomial(2^n,2^(n-1)) = (2^n)!/((2^(n-1))!)^2 for n > 0. - _Martin Renner_, Jan 16 2017 %F A037293 a(n) = (2^(2^n)*(2^n + 2)*(1/2*(2^n + 1))!)/(sqrt(Pi)*(2^n + 1)*(1/2*(2^n + 2))!) = (2^(2^n)*(2^n + 2)*Gamma((2^n+3)/2))/(sqrt(Pi)*(2^n + 1)*Gamma(2^(n-1)+2)) for n > 0. - _Alexander R. Povolotsky_, Nov 19 2022 %F A037293 a(n) = 2 * A069954(n-1) for n > 0. - _Tilman Piesk_, Oct 11 2024 %p A037293 a:= n-> (t-> binomial(t, iquo(t, 2)))(2^n): %p A037293 seq(a(n), n=0..8); # _Alois P. Heinz_, Jan 14 2017 %p A037293 # %p A037293 a:=n->sum(binomial(2^(n-1),i)^2,i=0..2^(n-1)); seq(a(n),n=0..8); %p A037293 a:=n->piecewise(n=0,1,binomial(2^n,2^(n-1))); seq(a(n),n=0..8); # _Martin Renner_, Jan 16 2017 %t A037293 Flatten[{1,Table[Binomial[2^n, 2^(n-1)], {n, 1, 8}]}] (* _Vaclav Kotesovec_, Nov 13 2014 *) %o A037293 (PARI) a(n) = sum(i=0, 2^(n-1), binomial(2^(n-1), i)^2) \\ _Michel Marcus_, Jun 09 2013 %o A037293 (Python) %o A037293 from math import comb %o A037293 def A037293(n): return comb(1<<n,1<<n-1) if n else 1 # _Chai Wah Wu_, Dec 11 2024 %Y A037293 Cf. A000079, A000984, A001405, A069954, A000721. %K A037293 nonn,easy %O A037293 0,2 %A A037293 _John Tromp_, Dec 11 1999 %E A037293 More terms from _Erich Friedman_