A261691 Change of base from fractional base 3/2 to base 3.
0, 1, 2, 6, 7, 8, 21, 22, 23, 63, 64, 65, 69, 70, 71, 192, 193, 194, 207, 208, 209, 213, 214, 215, 579, 580, 581, 621, 622, 623, 627, 628, 629, 642, 643, 644, 1737, 1738, 1739, 1743, 1744, 1745, 1866, 1867, 1868, 1881, 1882, 1883, 1887, 1888, 1889, 1929, 1930
Offset: 0
Examples
The base 3/2 representation of 7 is (2,1,1); i.e., 7 = 2*(3/2)^2 + 1*(3/2) + 1. Since 2*(3^2) + 1*3 + 1*1 = 22, we have a(7) = 22.
Links
Crossrefs
Programs
-
Mathematica
a[n_] := a[n] = If[n == 0, 0, 3 * a[2 * Floor[n/3]] + Mod[n, 3]]; Array[a, 100, 0] (* Amiram Eldar, Aug 04 2025 *)
-
PARI
a(n) = { my (v=0, t=1); while (n, v+=t*(n%3); n=(n\3)*2; t*=3); v } \\ Rémy Sigrist, Apr 06 2021
-
Sage
def changebase(n): L=[n] i=1 while L[i-1]>2: x=L[i-1] L[i-1]=x.mod(3) L.append(2*floor(x/3)) i+=1 return sum([L[i]*3^i for i in [0..len(L)-1]]) [changebase(n) for n in [0..100]]
Formula
For n = Sum_{i=0..m} c_i*(3/2)^i with each c_i in {0,1,2}, a(n) = Sum_{i=0..m} c_i*3^i.
From Rémy Sigrist, Apr 06 2021: (Start)
Apparently:
- a(3*n+1) = a(3*n) + 1 for any n >= 0,
- a(3*n+2) = a(3*n+1) + 1 for any n >= 0,
(End)
Comments