cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037465 a(n) = Sum_{i=0..m} d(i)*6^i, where Sum_{i=0..m} d(i)*5^i is the base 5 representation of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93
Offset: 0

Views

Author

Keywords

Comments

Numbers without digit 5 in base 6. Complement of A333656. - François Marques, Oct 13 2020

Examples

			a(34)=46 because 34 is 114_5 in base 5 and 114_6=46. - _François Marques_, Oct 13 2020
		

Crossrefs

Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), this sequence (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Mathematica
    Table[FromDigits[RealDigits[n, 5], 6], {n, 0, 100}] (* Clark Kimberling, Aug 14 2012 *)
  • PARI
    a(n) = fromdigits(digits(n, 5), 6); \\ François Marques, Oct 13 2020
    
  • Python
    from gmpy2 import digits
    def A037465(n): return int(digits(n,5),6) # Chai Wah Wu, May 06 2025

Extensions

Offset changed to 0 by Clark Kimberling, Aug 14 2012