A037809 Number of i such that d(i) <= d(i-1), where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 3, 4, 4, 4, 4, 5, 4, 4, 3, 4, 3, 3, 3, 4, 4, 4, 3
Offset: 1
Examples
The base-2 representation of n=4 is 100 with d(0)=0, d(1)=0, d(2)=1. Only d(1) <= d(0) is true, so a(4)=1. - _R. J. Mathar_, Oct 16 2015
Links
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
Crossrefs
Cf. A033265.
Programs
-
Maple
A037809 := proc(n) a := 0 ; dgs := convert(n,base,2); for i from 2 to nops(dgs) do if op(i,dgs)<=op(i-1,dgs) then a := a+1 ; end if; end do: a ; end proc: # R. J. Mathar, Oct 16 2015
Formula
From Ralf Stephan, Oct 05 2003: (Start)
G.f.: -x/(1-x) + 1/(1-x) * Sum_{k>=0} (t + t^3 + t^4)/(1 + t + t^2 + t^3), where t=x^2^k.
a(n) = b(n) - 1, with b(0)=0, b(2n) = b(n) + [n even], b(2n+1) = b(n) + 1. (End)
Extensions
Sign in Name corrected by R. J. Mathar, Oct 16 2015