cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037809 Number of i such that d(i) <= d(i-1), where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 3, 4, 4, 4, 4, 5, 4, 4, 3, 4, 3, 3, 3, 4, 4, 4, 3
Offset: 1

Views

Author

Keywords

Examples

			The base-2 representation of n=4 is 100 with d(0)=0, d(1)=0, d(2)=1. Only d(1) <= d(0) is true, so a(4)=1. - _R. J. Mathar_, Oct 16 2015
		

Crossrefs

Cf. A033265.

Programs

  • Maple
    A037809 := proc(n)
        a := 0 ;
        dgs := convert(n,base,2);
        for i from 2 to nops(dgs) do
            if op(i,dgs)<=op(i-1,dgs) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 16 2015

Formula

From Ralf Stephan, Oct 05 2003: (Start)
G.f.: -x/(1-x) + 1/(1-x) * Sum_{k>=0} (t + t^3 + t^4)/(1 + t + t^2 + t^3), where t=x^2^k.
a(n) = A056973(n) + A000120(n) - 1.
a(n) = b(n) - 1, with b(0)=0, b(2n) = b(n) + [n even], b(2n+1) = b(n) + 1. (End)

Extensions

Sign in Name corrected by R. J. Mathar, Oct 16 2015