cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037852 Number of normal subgroups of dihedral group with 2n elements.

This page as a plain text file.
%I A037852 #26 Jul 25 2025 09:01:00
%S A037852 2,5,3,6,3,7,3,7,4,7,3,9,3,7,5,8,3,9,3,9,5,7,3,11,4,7,5,9,3,11,3,9,5,
%T A037852 7,5,12,3,7,5,11,3,11,3,9,7,7,3,13,4,9,5,9,3,11,5,11,5,7,3,15,3,7,7,
%U A037852 10,5,11,3,9,5,11,3,15,3,7,7
%N A037852 Number of normal subgroups of dihedral group with 2n elements.
%C A037852 When n is an odd prime a(n) = 3.
%C A037852 Write D_{2n} as <a, x | a^n = x^2 = 1, x*a*x = a^(-1)>, then the subgroups are of the form <a^d> for d|n or <a^d, a^r*x> for d|n and 0 <= r < d. The normal subgroups are <a^d> for d|n and <a^d, a^r*x> for d|gcd(n,2) and 0 <= r < d. There are d(n) normal subgroups of the first type and sigma(gcd(n,2)) normal subgroups of the second type. - _Jianing Song_, Jul 21 2022
%H A037852 Antti Karttunen, <a href="/A037852/b037852.txt">Table of n, a(n) for n = 1..1001</a>
%H A037852 Keith Conrad, <a href="https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf">Dihedral Groups II</a>
%H A037852 The Group Properties Wiki, <a href="https://groupprops.subwiki.org/wiki/Subgroup_structure_of_dihedral_groups">Subgroup structure of dihedral groups</a>
%H A037852 <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%F A037852 a(n) = d(n) + 2 + (-1)^n. - _Paul Boddington_, Feb 02 2004
%F A037852 a(n) = A000005(n) + A176040(n). - _Michel Marcus_, Aug 19 2015
%e A037852 a(4) = 6 since D_8 = <a, x | a^4 = x^2 = 1, x*a*x = a^(-1)> has 6 normal subgroups: {e}, {e,a^2}, {e,a,a^2,a^3}, {e,a^2,x,a^2*x}, {e,a^2,a*x,a^3*x} and D_8. The 4 subgroups {e,x}, {e,a*x}, {e,a^2*x} and {e,a^3*x} are not normal. - _Jianing Song_, Jul 21 2022
%o A037852 (PARI) a(n) = numdiv(n) + 2 + (-1)^n \\ _Michel Marcus_, Jul 30 2013
%Y A037852 Cf. A062249, A007503, A062553.
%Y A037852 Cf. A000005, A176040.
%K A037852 nonn,easy
%O A037852 1,1
%A A037852 Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 04 2001
%E A037852 More terms from _Michel Marcus_, Jul 30 2013