cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037853 Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,...,m}, where Sum{d(i)*3^i: i=0,1,...,m} is base 3 representation of n.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 0, 2, 2, 2, 2, 1, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 0, 2, 2, 2, 2, 1, 1, 2, 1, 0, 2, 2, 2, 3, 2, 2, 4, 3, 2, 2, 2, 2, 2, 1, 1, 3, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 3, 2, 1, 2
Offset: 1

Views

Author

Keywords

Comments

This is the base-3 down-variation sequence; see A297330. - Clark Kimberling, Jan 18 2018

Crossrefs

Programs

  • Maple
    A037853 := proc(n)
        a := 0 ;
        dgs := convert(n,base,3);
        for i from 2 to nops(dgs) do
            if op(i,dgs)>op(i-1,dgs) then
                a := a+op(i,dgs)-op(i-1,dgs) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 16 2015
  • Mathematica
    g[n_, b_] := Differences[IntegerDigits[n, b]]; b = 3; z = 120;
    Table[-Total[Select[g[n, b], # < 0 &]], {n, 1, z}];  (*A037853*)
    Table[Total[Select[g[n, b], # > 0 &]], {n, 1, z}];   (*A037844*)
    (* Clark Kimberling, Jan 18 2018 *)

Extensions

Definition corrected by R. J. Mathar, Oct 16 2015