A037854 Sum_{i=1..m, d(i)>d(i-1)} d(i)-d(i-1), where Sum_{i=0..m} d(i)*4^i is the base 4 representation of n.
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 2, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 3, 2, 1, 0, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 0, 0, 3, 2, 1, 0, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 1, 1, 3, 2, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 2, 1, 0
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A297330.
Programs
-
Maple
A037854 := proc(n) a := 0 ; dgs := convert(n,base,4); for i from 2 to nops(dgs) do if op(i,dgs)>op(i-1,dgs) then a := a+op(i,dgs)-op(i-1,dgs) ; end if; end do: a ; end proc: # R. J. Mathar, Oct 19 2015
-
Mathematica
d[n_] := d[n] = Differences[RealDigits[n, 4][[1]]] Table[Total[Select[d[n], # > 0 &]], {n, 1, z}]; (* A037845 *) -Table[Total[Select[d[n], # < 0 &]], {n, 1, z}]; (* A037854 *) (* Clark Kimberling, Oct 20 2015 *)
Extensions
Definition swapped with A037845 by R. J. Mathar, Oct 19 2015
Comments