cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037857 Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,...,m}, where Sum{d(i)*7^i: i=0,1,...,m} is base 7 representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0, 0, 4, 3, 2, 1, 0, 0, 0, 5, 4, 3, 2, 1, 0, 0, 6, 5, 4, 3, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0, 0, 4, 3, 2, 1, 0, 0, 0, 5, 4, 3, 2, 1, 0, 0
Offset: 1

Views

Author

Keywords

Comments

This is the base-7 down-variation sequence; see A297330. - Clark Kimberling, Jan 18 2017

Programs

  • Maple
    A037857 := proc(n)
        a := 0 ;
        dgs := convert(n,base,7);
        for i from 2 to nops(dgs) do
            if op(i,dgs)>op(i-1,dgs) then
                a := a+op(i,dgs)-op(i-1,dgs) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 19 2015
  • Mathematica
    g[n_, b_] := Differences[IntegerDigits[n, b]]; b = 7; z = 120;
    Table[-Total[Select[g[n, b], # < 0 &]], {n, 1, z}];  (*A037857*)
    Table[Total[Select[g[n, b], # > 0 &]], {n, 1, z}];   (*A037848*)

Extensions

Definition swapped with A037848. - R. J. Mathar, Oct 19 2015
Updated by Clark Kimberling, Jan 19 2018