cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A297330 Total variation of base-10 digits of n; see Comments.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 8, 7, 6, 5, 4, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 17 2018

Keywords

Comments

Suppose that a number n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). Guide to related sequences and partitions of the natural numbers:
***
Base b {DV(n,b)} {UV(n,b)} {TV(n,b)}
For each b, let u = {n : UV(n,b) < DV(n,b)}, e = {n : UV(n,b) = DV(n,b)}, and d = {n : UV(n,b) > DV(n,b)}. The sets u,e,d partition the natural numbers. A guide to the matching sequences for u, e, d follows:
***
Base b Sequence u Sequence e Sequence d
2 A005843 A005408 (none)
Not a duplicate of A151950: e.g., a(100)=1 but A151950(100)=11. - Robert Israel, Feb 06 2018

Examples

			13684632 has DV = 8-4 + 6-3 + 3-2 = 8 and has UV = 3-1 + 6-3 + 8-6 + 6-4 = 9, so that a(13684632) = DV + UV = 17.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,i; L:= convert(n,base,10);
    add(abs(L[i+1]-L[i]),i=1..nops(L)-1) end proc:
    map(f, [$1..100]); # Robert Israel, Feb 04 2018
    # alternative
    A297330 := proc(n)
        A037860(n)+A037851(n) ;
    end proc: # R. J. Mathar, Sep 27 2021
  • Mathematica
    b = 10; z = 120; t = Table[Total@Flatten@Map[Abs@Differences@# &, Partition[ IntegerDigits[n, b], 2, 1]], {n, z}] (* after Michael De Vlieger, e.g. A037834 *)
  • Python
    def A297330(n):
        s = str(n)
        return sum(abs(int(s[i])-int(s[i+1])) for i in range(len(s)-1)) # Chai Wah Wu, May 31 2022

A037851 a(n)=Sum{d(i-1)-d(i): d(i)

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Keywords

Comments

This is the base-10 up-variation sequence; see A297330.

Crossrefs

Programs

  • Maple
    A037851 := proc(n)
        a := 0 ;
        dgs := convert(n,base,10);
        for i from 2 to nops(dgs) do
            if op(i,dgs)R. J. Mathar, Oct 19 2015
  • Mathematica
    g[n_, b_] := Differences[IntegerDigits[n, b]]; b = 10; z = 120;
    Table[-Total[Select[g[n, b], # < 0 &]], {n, 1, z}];  (*A037860*)
    Table[Total[Select[g[n, b], # > 0 &]], {n, 1, z}];   (*A037851*)

Extensions

Definition swapped with A037860. - R. J. Mathar, Oct 19 2015
Updated by Clark Kimberling, Jan 19 2018

A297271 Numbers whose base-10 digits have equal down-variation and up-variation; see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2018

Keywords

Comments

Suppose that n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.\
Differs after the zero from A002113 first at 1011, which is not a palindrome but has DV(1011,10) = UV(1011,10) =1. - R. J. Mathar, Jan 23 2018
Apart from 0, the initial terms coincide with those of A266140, but the two sequences are different. First disagreement: a(109) = 1001 and A266140(110) = 1111. - Georg Fischer, Oct 09 2018

Examples

			13601 in base-10:  1,3,6,0,1, having DV = 6, UV = 6, so that 13601 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
    x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
    b = 10; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
    w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
    Take[Flatten[Position[w, -1]], 120]   (* A297270 *)
    Take[Flatten[Position[w, 0]], 120]    (* A297271 *)
    Take[Flatten[Position[w, 1]], 120]    (* A297272 *)

Formula

{k: A037851(k) = A037860(k)}. - R. J. Mathar, Sep 27 2021
Showing 1-3 of 3 results.