cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037947 Coefficients of unique normalized cusp form Delta_26 of weight 26 for full modular group.

This page as a plain text file.
%I A037947 #37 Feb 27 2018 10:37:33
%S A037947 1,-48,-195804,-33552128,-741989850,9398592,39080597192,3221114880,
%T A037947 -808949403027,35615512800,8419515299052,6569640870912,
%U A037947 -81651045335314,-1875868665216,145284580589400,1125667983917056,-2519900028948078
%N A037947 Coefficients of unique normalized cusp form Delta_26 of weight 26 for full modular group.
%D A037947 G. Harder. "A Congruence Between a Siegel and an Elliptic Modular Form." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 247-262.
%H A037947 Seiichi Manyama, <a href="/A037947/b037947.txt">Table of n, a(n) for n = 1..1000</a>
%H A037947 Fernando Q. GouvĂȘa, <a href="http://projecteuclid.org/euclid.em/1047920420">Non-ordinary primes: a story</a>, Experimental Mathematics, Volume 6, Issue 3 (1997), 195-205.
%H A037947 S. C. Milne, <a href="https://arxiv.org/abs/math/0009130">Hankel determinants of Eisenstein series</a>, preprint, arXiv:0009130 [math.NT], 2000.
%H A037947 <a href="/index/Gre#groups_modular">Index entries for sequences related to modular groups</a>
%F A037947 G.f.: (E_4(q)^3 - E_6(q)^2)/12^3 * E_6(q) * E_4(q)^2. - _Seiichi Manyama_, Jun 09 2017
%F A037947 G.f.: -691*3617/(1728*2*3*5^3*7^2*13) * (E_10(q)*E_16(q) - E_12(q)*E_14(q)). - _Seiichi Manyama_, Jul 25 2017
%e A037947 q^2 - 48*q^4 - ...
%t A037947 terms = 17;
%t A037947 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms+1}];
%t A037947 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms+1}];
%t A037947 ((E4[x]^3 - E6[x]^2)/12^3)*E6[x]*E4[x]^2 + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* _Jean-François Alcover_, Feb 27 2018, after _Seiichi Manyama_ *)
%Y A037947 Cf. A000594 ((E_4(q)^3 - E_6(q)^2)/12^3), A004009 (E_4(q)), A013973 (E_6(q)), A290182.
%K A037947 sign
%O A037947 1,2
%A A037947 _N. J. A. Sloane_