This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037958 #27 Jul 08 2025 22:07:35 %S A037958 0,0,0,0,0,0,0,0,1,1,10,11,66,78,364,455,1820,2380,8568,11628,38760, %T A037958 54264,170544,245157,735471,1081575,3124550,4686825,13123110,20030010, %U A037958 54627300,84672315,225792840 %N A037958 a(n) = binomial(n, floor((n-8)/2)). %H A037958 Robert Israel, <a href="/A037958/b037958.txt">Table of n, a(n) for n = 0..3324</a> %F A037958 Conjecture: -(n+9)*(n-8)*a(n) +2*(n)*a(n-1) +4*n*(n-1)*a(n-2)=0. - _R. J. Mathar_, Jul 26 2015, verified by _Robert Israel_, Jun 28 2018 %F A037958 From _Robert Israel_, Jun 28 2018: (Start) %F A037958 E.g.f.: I_8(2*x)+I_9(2*x), where I_k is the modified Bessel function of the first kind and order k. %F A037958 G.f.: 256*x^8/((1+sqrt(1-4*x^2))^8*sqrt(1-4*x^2)) + 512*x^9/((1+sqrt(1-4*x^2))^9*sqrt(1-4*x^2)). (End) %p A037958 seq(binomial(n,floor((n-8)/2)), n=0..50); # _Robert Israel_, Jun 28 2018 %t A037958 Table[Binomial[n,Floor[(n-8)/2]],{n,0,40}] (* _Harvey P. Dale_, Jun 11 2013 *) %o A037958 (GAP) List([0..40],n->Binomial(n,Int((n-8)/2))); # _Muniru A Asiru_, Jun 29 2018 %K A037958 nonn %O A037958 0,11 %A A037958 _N. J. A. Sloane_