This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037959 #13 Jun 21 2022 05:07:41 %S A037959 6,90,1200,15750,211680,2963520,43545600,673596000,10977120000, %T A037959 188367379200,3399953356800,64457449056000,1281520880640000, %U A037959 26676557107200000,580481882652672000,13183287756807168000 %N A037959 a(n) = n^2*(n+1)*(n+2)!/48. %D A037959 Identity (1.19)/(n+3) in H. W. Gould, Combinatorial Identities, Morgantown, 1972, page 3. %H A037959 G. C. Greubel, <a href="/A037959/b037959.txt">Table of n, a(n) for n = 2..350</a> %F A037959 (n-1)^2*a(n) = n*(n+2)*(n+1)*a(n-1). - _R. J. Mathar_, Jul 26 2015 %F A037959 From _G. C. Greubel_, Jun 20 2022: (Start) %F A037959 a(n) = (1/(n+3))*Sum_{j=0..n} (-1)^(n+j)*binomial(n,j)*j^(n+3). %F A037959 a(n) = n!*StirlingS2(n+3, n)/(n+3). %F A037959 a(n) = A037961(n)/(n+3). %F A037959 a(n) = A131689(n+3, n). %F A037959 a(n) = A019538(n+3, n). %F A037959 E.g.f.: x*(1 + 6*x + 3*x^2)/(4*(1-x)^6). (End) %t A037959 Table[(n+2)!n^2(n+1)/48,{n,2,20}] (* _Harvey P. Dale_, Jul 29 2021 *) %o A037959 (Magma) [Factorial(n)*StirlingSecond(n+3,n)/(n+3): n in [2..30]]; // _G. C. Greubel_, Jun 20 2022 %o A037959 (SageMath) [factorial(n)*stirling_number2(n+3, n)/(n+3) for n in (2..30)] # _G. C. Greubel_, Jun 20 2022 %Y A037959 Cf. A000142, A001297, A019538, A131689. %Y A037959 Cf. A037960, A037961, A037962, A037963. %K A037959 nonn %O A037959 2,1 %A A037959 _N. J. A. Sloane_