This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037961 #35 Sep 08 2022 08:44:53 %S A037961 0,1,30,540,8400,126000,1905120,29635200,479001600,8083152000, %T A037961 142702560000,2637143308800,50999300352000,1031319184896000, %U A037961 21785854970880000,480178027929600000,11029155770400768000 %N A037961 a(n) = n^2*(n+1)*(n+3)!/48. %C A037961 For n>=1, a(n) is equal to the number of surjections from {1,2,...,n+3} onto {1,2,...,n}. - Aleksandar M. Janjic and _Milan Janjic_, Feb 24 2007 %D A037961 Identity (1.19) in H. W. Gould, Combinatorial Identities, Morgantown, 1972; page 3. %H A037961 Vincenzo Librandi, <a href="/A037961/b037961.txt">Table of n, a(n) for n = 0..400</a> %H A037961 H. W. Gould, ed. J. Quaintance, <a href="http://www.math.wvu.edu/~gould/Vol.4.PDF">Combinatorial Identities</a>, May 2010 (section 10, p.45) %H A037961 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a> %F A037961 (n-1)^2*a(n) - n*(n+3)*(n+1)*a(n-1) = 0. - _R. J. Mathar_, Jul 26 2015 %F A037961 E.g.f.: x*(1 + 8*x + 6*x^2)/(1 - x)^7. - _Ilya Gutkovskiy_, Feb 20 2017 %F A037961 a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*k^(n+3). - _Peter Bala_, Mar 28 2017 %F A037961 From _G. C. Greubel_, Jun 20 2022: (Start) %F A037961 a(n) = n!*StirlingS2(n+3, n). %F A037961 a(n) = A131689(n+3, n). %F A037961 a(n) = A019538(n+3, n). (End) %t A037961 Table[n!*StirlingS2[n+3, n], {n,0,30}] (* _G. C. Greubel_, Jun 20 2022 *) %o A037961 (PARI) a(n)=(n+3)!*n^2*(n+1)/48 \\ _Charles R Greathouse IV_, Nov 02 2011 %o A037961 (Magma) [Factorial(n+3)*n^2*(n+1)/48: n in [0..20]]; // _Vincenzo Librandi_, Nov 18 2011 %o A037961 (SageMath) [factorial(n)*stirling_number2(n+3, n) for n in (0..30)] # _G. C. Greubel_, Jun 20 2022 %Y A037961 Cf. A000142, A001286, A001297, A019538, A037960, A131689. %K A037961 nonn,easy %O A037961 0,3 %A A037961 _N. J. A. Sloane_