This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A037962 #13 Jun 20 2022 04:29:29 %S A037962 0,1,62,1806,40824,834120,16435440,322494480,6411968640,130456085760, %T A037962 2731586457600,59056027430400,1320663933388800,30575780537702400, %U A037962 733062897120153600,18198613875746304000 %N A037962 a(n) = n*(15*n^3 + 30*n^2 + 5*n - 2)*(n+4)!/5760. %C A037962 For n>=1, a(n) is equal to the number of surjections from {1,2,...,n+4} onto {1,2,...,n}. - Aleksandar M. Janjic and _Milan Janjic_, Feb 24 2007 %D A037962 Identity (1.20) in H. W. Gould, Combinatorial Identities, Morgantown, 1972, page 3. %H A037962 G. C. Greubel, <a href="/A037962/b037962.txt">Table of n, a(n) for n = 0..350</a> %H A037962 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a> %F A037962 From _G. C. Greubel_, Jun 20 2022: (Start) %F A037962 a(n) = (-1)^n * Sum_{j=0..n} (-1)^j * binomial(n, j)*j^(n+4). %F A037962 a(n) = n!*StirlingS2(n+4, n). %F A037962 a(n) = A131689(n+4, n). %F A037962 a(n) = A019538(n+4, n). %F A037962 E.g.f.: x*(1 + 22*x + 58*x^2 + 24*x^3)/(1-x)^9. (End) %t A037962 Table[(n+4)!n(15n^3+30n^2+5n-2)/5760,{n,0,20}] (* _Harvey P. Dale_, Nov 16 2020 *) %t A037962 Table[n!*StirlingS2[n+4, n], {n,0,30}] (* _G. C. Greubel_, Jun 20 2022 *) %o A037962 (Magma) [Factorial(n)*StirlingSecond(n+4,n): n in [0..30]]; // _G. C. Greubel_, Jun 20 2022 %o A037962 (SageMath) [factorial(n)*stirling_number2(n+4,n) for n in (0..30)] # _G. C. Greubel_, Jun 20 2022 %Y A037962 Cf. A000142, A001298, A019538, A131689. %K A037962 nonn %O A037962 0,3 %A A037962 _N. J. A. Sloane_