This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038003 #64 May 22 2025 10:20:06 %S A038003 1,1,5,429,9694845,14544636039226909, %T A038003 94295850558771979787935384946380125, %U A038003 11311095732253345760960290897769189975961199415637572612957718759342193629 %N A038003 Odd Catalan numbers: a(n) = A000108(2^n-1). %C A038003 The next term has 150 digits. - _Harvey P. Dale_, Feb 22 2016 %H A038003 David Wasserman, May 07 2007, <a href="/A038003/b038003.txt">Table of n, a(n) for n = 0..9</a> %H A038003 H-Y. Lin, <a href="http://www.emis.de/journals/INTEGERS/papers/l55/l55.Abstract.html">Odd Catalan Numbers modulo 2^k</a>, Integers 11 (2011) #A55 %H A038003 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CatalanNumber.html">Catalan Number</a> %F A038003 a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n). %F A038003 a(n-1) = C(2^n,2^(n-1))/(2^n - 1)/2. - _Benoit Cloitre_, Aug 17 2002 %F A038003 a(n) = A000108(2^n-1). - _David Wasserman_, May 07 2007 %t A038003 Select[CatalanNumber[Range[0,300]],OddQ] (* _Harvey P. Dale_, Feb 22 2016 *) %o A038003 (Python) %o A038003 from __future__ import division %o A038003 A038003_list, c, s = [1, 1], 1, 3 %o A038003 for n in range(2,10**5+1): %o A038003 c = (c*(4*n-2))//(n+1) %o A038003 if n == s: %o A038003 A038003_list.append(c) %o A038003 s = 2*s+1 # _Chai Wah Wu_, Feb 12 2015 %o A038003 (PARI) a(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n); \\ _Joerg Arndt_, Nov 05 2015 %o A038003 (Magma) [Binomial(2^(n+1)-2, 2^n-1)/(2^n): n in [0..10]]; // _Vincenzo Librandi_, Nov 01 2016 %Y A038003 Cf. A000108, A094389, A119861, A119908, A120274, A120275. %Y A038003 Intersection of A001790 and A098597. - _Dimitri Papadopoulos_, Oct 28 2016 %K A038003 nonn %O A038003 0,3 %A A038003 _Christian G. Bower_