cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038035 Number of labeled dyslexic planted planar trees with n+1 nodes.

This page as a plain text file.
%I A038035 #18 Sep 08 2019 12:27:26
%S A038035 1,2,9,72,840,12780,238770,5281920,134946000,3909578400,126638542800,
%T A038035 4535037460800,177904622095200,7586967310322400,349479111223242000,
%U A038035 17292052928037888000,914673660594613920000,51506610632458293312000,3076341001739003430432000
%N A038035 Number of labeled dyslexic planted planar trees with n+1 nodes.
%H A038035 Andrew Howroyd, <a href="/A038035/b038035.txt">Table of n, a(n) for n = 1..200</a>
%H A038035 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>
%H A038035 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A038035 Divides by n and shifts left under "BIJ" (reversible, indistinct, labeled) transform.
%F A038035 E.g.f.: series reversion of 2*x*(1 - x)/(2 - x^2). - _Andrew Howroyd_, Sep 19 2018
%t A038035 m = 20;
%t A038035 CoefficientList[InverseSeries[2*x*(1 - x)/(2 - x^2) + O[x]^m], x]*Range[0, m - 1]! // Rest (* _Jean-François Alcover_, Sep 08 2019 *)
%o A038035 (PARI) Vec(serlaplace(serreverse(2*x*(1 - x)/(2 - x^2) + O(x^20)))) \\ _Andrew Howroyd_, Sep 19 2018
%Y A038035 Cf. A005470, A032128.
%K A038035 nonn,eigen
%O A038035 1,2
%A A038035 _Christian G. Bower_, Sep 15 1998
%E A038035 Terms a(16) and beyond from _Andrew Howroyd_, Sep 19 2018