This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038041 #70 Sep 26 2024 12:58:14 %S A038041 1,2,2,5,2,27,2,142,282,1073,2,32034,2,136853,1527528,4661087,2, %T A038041 227932993,2,3689854456,36278688162,13749663293,2,14084955889019, %U A038041 5194672859378,7905858780927,2977584150505252,13422745388226152,2,1349877580746537123,2 %N A038041 Number of ways to partition an n-set into subsets of equal size. %C A038041 a(n) = 2 iff n is prime with a(p) = card{ 1|2|3|...|p-1|p, 123...p } = 2. - _Bernard Schott_, May 16 2019 %H A038041 Alois P. Heinz, <a href="/A038041/b038041.txt">Table of n, a(n) for n = 1..250</a> %H A038041 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %F A038041 a(n) = Sum_{d divides n} (n!/(d!*((n/d)!)^d)). %F A038041 E.g.f.: Sum_{k >= 1} (exp(x^k/k!)-1). %e A038041 a(4) = card{ 1|2|3|4, 12|34, 14|23, 13|24, 1234 } = 5. %e A038041 From _Gus Wiseman_, Jul 12 2019: (Start) %e A038041 The a(6) = 27 set partitions: %e A038041 {{1}{2}{3}{4}{5}{6}} {{12}{34}{56}} {{123}{456}} {{123456}} %e A038041 {{12}{35}{46}} {{124}{356}} %e A038041 {{12}{36}{45}} {{125}{346}} %e A038041 {{13}{24}{56}} {{126}{345}} %e A038041 {{13}{25}{46}} {{134}{256}} %e A038041 {{13}{26}{45}} {{135}{246}} %e A038041 {{14}{23}{56}} {{136}{245}} %e A038041 {{14}{25}{36}} {{145}{236}} %e A038041 {{14}{26}{35}} {{146}{235}} %e A038041 {{15}{23}{46}} {{156}{234}} %e A038041 {{15}{24}{36}} %e A038041 {{15}{26}{34}} %e A038041 {{16}{23}{45}} %e A038041 {{16}{24}{35}} %e A038041 {{16}{25}{34}} %e A038041 (End) %p A038041 A038041 := proc(n) local d; %p A038041 add(n!/(d!*(n/d)!^d), d = numtheory[divisors](n)) end: %p A038041 seq(A038041(n),n = 1..29); # _Peter Luschny_, Apr 16 2011 %t A038041 a[n_] := Block[{d = Divisors@ n}, Plus @@ (n!/(#! (n/#)!^#) & /@ d)]; Array[a, 29] (* _Robert G. Wilson v_, Apr 16 2011 *) %t A038041 Table[Sum[n!/((n/d)!*(d!)^(n/d)), {d, Divisors[n]}], {n, 1, 31}] (* _Emanuele Munarini_, Jan 30 2014 *) %t A038041 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A038041 Table[Length[Select[sps[Range[n]],SameQ@@Length/@#&]],{n,0,8}] (* _Gus Wiseman_, Jul 12 2019 *) %o A038041 (PARI) /* compare to A061095 */ %o A038041 mnom(v)= %o A038041 /* Multinomial coefficient s! / prod(j=1, n, v[j]!) where %o A038041 s= sum(j=1, n, v[j]) and n is the number of elements in v[]. */ %o A038041 sum(j=1, #v, v[j])! / prod(j=1, #v, v[j]!) %o A038041 A038041(n)={local(r=0);fordiv(n,d,r+=mnom(vector(d,j,n/d))/d!);return(r);} %o A038041 vector(33,n,A038041(n)) /* _Joerg Arndt_, Apr 16 2011 */ %o A038041 (Maxima) a(n):= lsum(n!/((n/d)!*(d!)^(n/d)),d,listify(divisors(n))); %o A038041 makelist(a(n),n,1,40); /* _Emanuele Munarini_, Feb 03 2014 */ %o A038041 (Python) %o A038041 import math %o A038041 def a(n): %o A038041 count = 0 %o A038041 for k in range(1, n + 1): %o A038041 if n % k == 0: %o A038041 count += math.factorial(n) // (math.factorial(k) ** (n // k) * math.factorial(n // k)) %o A038041 return count # _Paul Muljadi_, Sep 25 2024 %Y A038041 Cf. A061095 (same but with labeled boxes), A005225, A236696, A055225, A262280, A262320. %Y A038041 Column k=1 of A208437. %Y A038041 Row sums of A200472 and A200473. %Y A038041 Cf. A000110, A007837 (different lengths), A035470 (equal sums), A275780, A317583, A320324, A322794, A326512 (equal averages), A326513. %K A038041 nonn,easy %O A038041 1,2 %A A038041 _Christian G. Bower_ %E A038041 More terms from _Erich Friedman_