This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038048 #54 Mar 02 2019 23:33:09 %S A038048 1,3,8,42,144,1440,5760,75600,524160,6531840,43545600,1117670400, %T A038048 6706022400,149448499200,2092278988800,40537905408000,376610217984000, %U A038048 13871809695744000,128047474114560000,5109094217170944000 %N A038048 a(n) = (n-1)! * sigma(n). %C A038048 sigma(n) = A000203(n) is the sum of the divisors of n. %C A038048 Number of labeled regular octopi (or octopuses, cycles of ordered sets all the same size). %C A038048 Left edge of triangle in A008298. %D A038048 F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67). %D A038048 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1). %H A038048 T. D. Noe, <a href="/A038048/b038048.txt">Table of n, a(n) for n = 1..100</a> %H A038048 Xiaojun Liu, Motohico Mulase, Adam Sorkin, <a href="http://arxiv.org/abs/1304.0015">Quantum curves for simple Hurwitz numbers of an arbitrary base curve</a>, arXiv:1304.0015 [math.AG], 2013. %H A038048 H. Ochiai, <a href="http://arXiv.org/abs/math-ph/9909023">Counting functions for branched covers of elliptic curves and quasi-modular forms</a>, arXiv:math-ph/9909023, 1999. %F A038048 a(n) = Sum_{d|n} n!/d. - _Amarnath Murthy_, Jul 24 2005 %F A038048 a(p) = (p+1)*(p-1)! if p is a prime. - _Amarnath Murthy_, Jul 24 2005 %F A038048 E.g.f.: log(f(x)), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1 - x^k). - _N. J. A. Sloane_ %F A038048 E.g.f.: Sum_{k>0} x^k/(k*(1-x^k)). - _Vladeta Jovovic_, Mar 27 2005 %F A038048 a(n) = A000142(n-1)*A000203(n). - _Omar E. Pol_, Feb 26 2014 %e A038048 a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6). %p A038048 a := n -> n!*add(1/j, j=numtheory:-divisors(n)): seq(a(n), n=1..23); # _Emeric Deutsch_, Jul 24 2005 %t A038048 a[n_] := (n-1)!*DivisorSigma[1, n]; Table[a[n], {n, 20}] (* _Jean-François Alcover_, Mar 23 2011 *) %o A038048 (PARI) a(n)=(n-1)!*sigma(n) \\ _Charles R Greathouse IV_, Mar 09 2014 %o A038048 (Sage) %o A038048 A038048 = lambda n: factorial(n-1)*sigma(n,1) %o A038048 [A038048(n) for n in (1..20)] # _Peter Luschny_, Jan 19 2016 %Y A038048 Cf. A000203, A057625, A058892, A110373, A110374. %K A038048 nonn,nice,easy %O A038048 1,2 %A A038048 _Christian G. Bower_ %E A038048 More terms from _Emeric Deutsch_, Jul 24 2005 %E A038048 Edited by _N. J. A. Sloane_, May 12 2008 at the suggestion of _Joerg Arndt_