This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038075 #23 May 19 2023 10:57:11 %S A038075 2,2,3,7,16,41,110,304,858,2474,7234,21418,64057,193277,587531, %T A038075 1797817,5532916,17115442,53186682,165958893,519764706,1633331926, %U A038075 5148420607,16273962742,51574291758,163834983761,521597902077,1663993969029,5318540288800,17029516243797 %N A038075 Number of rooted identity trees with 2-colored leaves. %H A038075 Alois P. Heinz, <a href="/A038075/b038075.txt">Table of n, a(n) for n = 1..600</a> %H A038075 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A038075 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A038075 Shifts left under Weigh transform. %F A038075 a(n) ~ c * d^n / n^(3/2), where d = 3.3683668081969694736300401764..., c = 0.4229796097587478606873477... . - _Vaclav Kotesovec_, Sep 10 2014 %F A038075 G.f. A(x) satisfies: A(x) = x + x * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) / k ). - _Ilya Gutkovskiy_, May 19 2023 %p A038075 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A038075 add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i))) %p A038075 end: %p A038075 a:= n-> `if`(n<2, 2*n, b(n-1, n-1)): %p A038075 seq(a(n), n=1..35); # _Alois P. Heinz_, Aug 01 2013 %t A038075 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n- i*j, i-1], {j, 0, n/i}]]]; %t A038075 a[n_] := If[n<2, 2*n, b[n-1, n-1]]; %t A038075 Table[a[n], {n, 1, 35}] (* _Jean-François Alcover_, Mar 01 2016, after _Alois P. Heinz_ *) %Y A038075 Cf. A004111, A038076. %K A038075 nonn %O A038075 1,1 %A A038075 _Christian G. Bower_, Jan 04 1999