cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038093 Number of nodes in largest rooted identity tree of height n.

This page as a plain text file.
%I A038093 #35 Jan 07 2019 11:54:00
%S A038093 1,2,4,11,97,3211265
%N A038093 Number of nodes in largest rooted identity tree of height n.
%C A038093 The next term is 19735 digits long, which is too large even for a b-file.
%C A038093 Also, the sequence gives the number of pairs of braces in the n-th iteration of the von Neumann universe. - _Adam P. Goucher_, Aug 18 2013
%H A038093 Adam P. Goucher, <a href="http://cp4space.wordpress.com/2013/07/17/von-neumann-universe/">Article including the first five iterations of the von Neumann universe</a>, "Complex Projective 4-Space" blog.
%H A038093 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A038093 Recurrence relation: a(n+1) = (a(n) + 1)*(2^^n)/2 + 1 where 2^^n is Knuth's up-arrow notation. - _Adam P. Goucher_, Aug 18 2013
%e A038093 For n = 3, the n-th iteration of the von Neumann universe is V3 = {{}, {{}}, {{{}}}, {{},{{}}}}, which has a(3) = 11 pairs of braces.
%p A038093 h:= (b, k)-> `if`(k=0, 1, b^h(b, k-1)):
%p A038093 a:= proc(n) option remember; `if`(n=0, 1,
%p A038093        1+(1+a(n-1))/2*h(2, n-1))
%p A038093     end:
%p A038093 seq(a(n), n=0..5);  # _Alois P. Heinz_, Aug 25 2017
%t A038093 Map[#[[1]]&,NestList[{(#[[1]]+1)*(2^#[[2]])/2+1,2^#[[2]]}&,{1,0},6]] (* _Adam P. Goucher_, Aug 18 2013 *)
%Y A038093 Cf. A038082, A038083, A038084, A038085, A038086, A038087, A038088, A038089, A038090, A038091, A038092, A229403, A229404.
%Y A038093 Cf. A227819.
%K A038093 nonn
%O A038093 0,2
%A A038093 _Christian G. Bower_, Jan 04 1999
%E A038093 a(6) from _Adam P. Goucher_, Aug 18 2013