cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038111 Denominator of density of integers with smallest prime factor prime(n).

This page as a plain text file.
%I A038111 #75 Feb 05 2025 01:52:39
%S A038111 2,6,15,105,385,1001,17017,323323,7436429,19605131,86822723,
%T A038111 3212440751,131710070791,5663533044013,266186053068611,
%U A038111 613385252723321,2783825377744303,5855632691117327,392327390304860909,27855244711645124539,2033432863950094091347,160641196252057433216413
%N A038111 Denominator of density of integers with smallest prime factor prime(n).
%C A038111 Denominator of (Product_{k=1..n-1} (1 - 1/prime(k)))/prime(n). - _Vladimir Shevelev_, Jan 09 2015
%C A038111 a(n)/a(n-1) = prime(n)/q(n) where q(n) is 1 or a prime for all n < 1000. What are the first indices for which q(n) is composite? - _M. F. Hasler_, Dec 04 2018
%H A038111 Robert Israel, <a href="/A038111/b038111.txt">Table of n, a(n) for n = 1..277</a>
%H A038111 Fred Kline and Gerry Myerson, <a href="http://math.stackexchange.com/q/867135/28555">Identity for frequency of integers with smallest prime(n) divisor</a>, Mathematics Stack Exchange, Jul 2014.
%H A038111 Vladimir Shevelev, <a href="https://doi.org/10.1155/2008/908045">Generalized Newman phenomena and digit conjectures on primes</a>, Int'l J. Math. and Math. Sci. (2008) Art. ID 908045, 1-12. See Eq. (5.8).
%F A038111 a(n) = denominator of phi(e^(psi(p_n-1)))/e^(psi(p_n)), where psi(.) is the second Chebyshev function and phi(.) is Euler's totient function. - _Fred Daniel Kline_, Jul 17 2014
%F A038111 a(n) = prime(n)*A060753(n). - _Vladimir Shevelev_, Jan 10 2015
%F A038111 a(n) = a(n-1)*prime(n)/q(n), where q(n) = 1 except for q({3, 5, 6, 10, 11, 16, 17, 18, ...}) = (2, 3, 5, 11, 7, 23, 13, 29, ...), cf. A112037. - _M. F. Hasler_, Dec 03 2018
%e A038111 From _M. F. Hasler_, Dec 03 2018: (Start)
%e A038111 The density of the even numbers is 1/2, thus a(1) = 2.
%e A038111 The density of the numbers divisible by 3 but not by 2 is 1/6, thus a(2) = 6.
%e A038111 The density of multiples of 5 not divisible by 2 or 3 is 2/30, thus a(3) = 15. (End)
%p A038111 N:= 100: # for the first N terms
%p A038111 Q:= 1: p:= 1:
%p A038111 for n from 1 to N do
%p A038111   p:= nextprime(p);
%p A038111   A[n]:= denom(Q/p);
%p A038111   Q:= Q * (1 - 1/p);
%p A038111 end:
%p A038111 seq(A[n],n=1..N); # _Robert Israel_, Jul 14 2014
%t A038111 Denominator@Table[ Product[ 1-1/Prime[ k ], {k, n-1} ]/Prime[ n ], {n, 1, 64} ]
%t A038111 (* _Wouter Meeussen_ *)
%t A038111 Denominator@
%t A038111 Table[EulerPhi[Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n] - 1}]]]/
%t A038111 Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n]}]], {n, 1, 21}]
%t A038111 (* _Fred Daniel Kline_, Jul 14 2014 *)
%o A038111 (PARI) apply( A038111(n)=denominator(prod(k=1,n-1,1-1/prime(k)))*prime(n), [1..30]) \\ _M. F. Hasler_, Dec 03 2018
%Y A038111 Cf. A038110, A060753, A112037.
%K A038111 nonn,frac
%O A038111 1,1
%A A038111 _Wouter Meeussen_
%E A038111 Name edited by _M. F. Hasler_, Dec 03 2018