This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038127 #30 Jan 31 2023 08:39:06 %S A038127 0,2,5,7,10,13,15,18,21,23,26,29,31,34,37,39,42,45,47,50,53,55,58,61, %T A038127 63,66,69,71,74,77,79,82,85,87,90,93,95,98,101,103,106,109,111,114, %U A038127 117,119,122,125,127,130,133,135,138,141,143,146,149,151 %N A038127 A Beatty sequence: a(n) = floor(n*2^sqrt(2)). %C A038127 2^sqrt(2) is the Hilbert number (a.k.a. Gelfond-Schneider constant) (A007507). %C A038127 Of course this is different from A047480. %H A038127 G. C. Greubel, <a href="/A038127/b038127.txt">Table of n, a(n) for n = 0..10000</a> %H A038127 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hilbert_number">Hilbert number</a> %H A038127 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %t A038127 Floor[2^Sqrt[2] Range[0,60]] (* _Harvey P. Dale_, Dec 03 2012 *) %o A038127 (PARI) for(n=1,50, print1(floor(n*2^(sqrt(2))), ", ")) \\ _G. C. Greubel_, Mar 27 2018 %o A038127 (Magma) [Floor(n*2^(Sqrt(2))): n in [1..50]]; // _G. C. Greubel_, Mar 27 2018 %K A038127 nonn %O A038127 0,2 %A A038127 _Felice Russo_