A038133 From a subtractive Goldbach conjecture: odd primes that are not cluster primes.
97, 127, 149, 191, 211, 223, 227, 229, 251, 257, 263, 269, 293, 307, 331, 337, 347, 349, 367, 373, 379, 383, 397, 409, 419, 431, 457, 479, 487, 499, 521, 541, 547, 557, 563, 569, 587, 593, 599, 631, 641, 673, 691, 701, 709, 719, 727, 733, 739, 743, 751
Offset: 1
References
- R. K. Guy, Unsolved Problems In Number Theory, section C1.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Richard Blecksmith, Paul Erdős and J. L. Selfridge, Cluster Primes, Amer. Math. Monthly, 106 (1999), 43-48.
- Thomas Bloom, Are there infinitely many primes p such that every even number n <= p-3 can be written as a difference of primes n = q_1 - q_2 where q_1, q_2 <= p?, Erdős Problems.
- Terence Tao, Erdős problem database, see entry no. 17.
- Eric Weisstein's World of Mathematics, Cluster Prime.
- Wikipedia, Cluster prime.
- Index entries for sequences related to Goldbach conjecture
Programs
-
Mathematica
m=1000; lst={}; n=PrimePi[m]-1; p=Table[Prime[i+1], {i, n}]; d=Table[0, {m/2}]; For[i=2, i<=n, i++, For[j=1, j0, AppendTo[lst, p[[i]]]]]; lst
Extensions
More terms from Christian G. Bower, Feb 15 1999
Comments