This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A038134 #23 Apr 02 2025 18:59:07 %S A038134 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89, %T A038134 101,103,107,109,113,131,137,139,151,157,163,167,173,179,181,193,197, %U A038134 199,233,239,241,271,277,281,283,311,313,317,353,359,389,401,421,433 %N A038134 From a subtractive Goldbach conjecture: cluster primes. %C A038134 Erdős asks if there are infinitely many primes p such that every even number <= p-3 can be expressed as the difference between two primes each <= p. %D A038134 R. K. Guy, Unsolved Problems In Number Theory, section C1. %H A038134 T. D. Noe, <a href="/A038134/b038134.txt">Cluster primes less than 10^6; table of n, a(n) for n = 1..8287</a> %H A038134 Richard Blecksmith, Paul Erdős and J. L. Selfridge, <a href="http://www.jstor.org/stable/2589585">Cluster Primes</a>, Amer. Math. Monthly, 106 (1999), 43-48. %H A038134 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClusterPrime.html">Cluster Prime.</a> %H A038134 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cluster_prime">Cluster prime</a>. %H A038134 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %t A038134 m=1000; lst={}; n=PrimePi[m]-1; p=Table[Prime[i+1], {i, n}]; d=Table[0, {m/2}]; For[i=2, i<=n, i++, For[j=1, j<i, j++, diff=p[[i]]-p[[j]]; d[[diff/2]]++ ]; c=Count[Take[d, (p[[i]]-3)/2], 0]; If[c==0, AppendTo[lst, p[[i]]]]]; lst %Y A038134 Cf. A038133, A039506, A039507, A072325. %K A038134 nonn,easy %O A038134 1,1 %A A038134 _N. J. A. Sloane_ %E A038134 More terms from _Christian G. Bower_, Feb 15 1999