cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038148 Number of 3-infinitary divisors of n: if n = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a <= b in its ternary expansion everywhere that the corresponding r(i) has a digit b, then d is a 3-infinitary-divisor of n.

Table of values

n a(n)
1 1
2 2
3 2
4 3
5 2
6 4
7 2
8 2
9 3
10 4
11 2
12 6
13 2
14 4
15 4
16 4
17 2
18 6
19 2
20 6
21 4
22 4
23 2
24 4
25 3
26 4
27 2
28 6
29 2
30 8
31 2
32 6
33 4
34 4
35 4
36 9
37 2
38 4
39 4
40 4
41 2
42 8
43 2
44 6
45 6
46 4
47 2
48 8
49 3
50 6
51 4
52 6
53 2
54 4
55 4
56 4
57 4
58 4
59 2
60 12
61 2
62 4
63 6
64 3
65 4
66 8
67 2
68 6
69 4
70 8
71 2
72 6
73 2
74 4
75 6
76 6
77 4
78 8
79 2
80 8
81 4
82 4
83 2
84 12
85 4
86 4
87 4
88 4
89 2
90 12
91 4
92 6
93 4
94 4
95 4
96 12
97 2
98 6
99 6
100 9
101 2
102 8
103 2
104 4
105 8

List of values

[1, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 2, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 4, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 4, 4, 4, 4, 4, 2, 12, 2, 4, 6, 3, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 4, 8]