cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038174 Number of "polyspheres", or "connected animals" formed from n rhombic dodecahedra (or edge-connected cubes) in the f.c.c. lattice, allowing translation and rotations of the lattice, reflections and 180 deg. rotations about a 3-fold symmetry axis of the lattice.

This page as a plain text file.
%I A038174 #20 Jul 08 2025 22:08:58
%S A038174 1,1,4,25,210,2209,24651,284768,3360995,40328652,490455189
%N A038174 Number of "polyspheres", or "connected animals" formed from n rhombic dodecahedra (or edge-connected cubes) in the f.c.c. lattice, allowing translation and rotations of the lattice, reflections and 180 deg. rotations about a 3-fold symmetry axis of the lattice.
%H A038174 S. T. Coffin, <a href="http://www.johnrausch.com/PuzzlingWorld/">Puzzling World of Polyhedral Dissections</a>, Oxford Univ. Press, 1991.
%H A038174 Ishino Keiichiro, <a href="https://puzzlewillbeplayed.com/Polyspheres/">Polysphere</a>, Puzzle will be played, 2008.
%H A038174 T. Sillke, <a href="http://www.mathematik.uni-bielefeld.de/~sillke/PENTA/notar">Notations for polyspheres</a>
%H A038174 <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>
%Y A038174 Cf. A000162, A038119, A038168, A038169, A038170, A038171, A038172, A038173.
%K A038174 nonn,more
%O A038174 1,3
%A A038174 _Achim Flammenkamp_, Torsten Sillke (TORSTEN.SILLKE(AT)LHSYSTEMS.COM)
%E A038174 a(9) and a(10) from _Achim Flammenkamp_ Feb 15 1999
%E A038174 a(11) from Ishino Keiichiro's website added by _Andrey Zabolotskiy_, Mar 03 2023